ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric study of five open star clusters

192   0   0.0 ( 0 )
 نشر من قبل Sneh Lata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$UBVRI$ photometry of the five open clusters Czernik 4, Berkeley 7, NGC 2236, NGC 7226 and King 12 has been carried out using ARIES 104 cm telescope, Nainital. Fundamental cluster parameters such as foreground reddening $E(B-V)$, distance, and age have been derived by means of the observed two colour and colour-magnitude diagrams, coupled to comparisons with theoretical models. $E(B-V)$ values range from 0.55 to 0.74 mag, while ages derived for these clusters range from $sim$10 to $sim$500 Myr. We have also studied the spatial structure, mass function and mass segregation effects. The present study shows that evaporation of low mass stars from the halo of the clusters increases as they evolve.



قيم البحث

اقرأ أيضاً

107 - E. Paunzen 2010
Photometric variability of chemically peculiar (CP) stars of the upper main sequence is closely connected to their local stellar magnetic field and their rotational period. Long term investigations, as presented here, help us to identify possible ste llar cycles (as in the Sun). Furthermore, these data provide a basis for detailed surface mapping techniques. Photoelectric Stroemgren uvby time series for 27 CP stars within the boundaries of open clusters are presented. In addition, Hipparcos photometric data (from 1989 to 1993) are used for our analysis. Our observations cover a time period of about six years (1986 to 1992) with typically fifteen measurements for each objects. These observations help us to determine the rotational periods of these objects. A standard reduction procedure was applied to the data. When possible, we merged our data sets with already published ones to obtain a more significant result. A detailed time series analysis was performed, involving five different methods to minimize spurious detections. We established, for the first time, variability for fourteen CP stars. For additional two stars, a merging of already published data sets, resulted in more precise periods, whereas for six objects, the published periods could be confirmed. Last, but not least, no significant variations were found for five stars. Apart from six stars, all targets seem to be members of their host open clusters.
In this study, we present CCD UBV photometry of poorly studied open star clusters, Dolidze 36, NGC 6728, NGC 6800, NGC 7209, and Platais 1, located in the first and second Galactic quadrants. Observations were obtained with T100, the 1-m telescope of the TUBITAK National Observatory. Using photometric data, we determined several astrophysical parameters such as reddening, distance, metallicity and ages and from them, initial mass functions, integrated magnitudes and colours. We took into account the proper motions of the observed stars to calculate the membership probabilities. The colour excesses and metallicities were determined independently using two-colour diagrams. After obtaining the colour excesses of the clusters Dolidze 36, NGC 6728, NGC 6800, NGC 7209, and Platais 1 as $0.19pm0.06$, $0.15pm0.05$, $0.32pm0.05$, $0.12pm0.04$, and $0.43pm0.06$ mag, respectively, the metallicities are found to be $0.00pm0.09$, $0.02pm0.11$, $0.03pm0.07$, $0.01pm0.08$, and $0.01pm0.08$ dex, respectively. Furthermore, using these parameters, distance moduli and age of the clusters were also calculated from colour-magnitude diagrams simultaneously using PARSEC theoretical models. The distances to the clusters Dolidze 36, NGC 6728, NGC 6800, NGC 7209, and Platais 1 are $1050pm90$, $1610pm190$, $1210pm150$, $1060pm 90$, and $1710pm250$ pc, respectively, while corresponding ages are $400pm100$, $750pm150$, $400pm100$, $600pm100$, and $175pm50$ Myr, respectively. Our results are compatible with those found in previous studies. The mass function of each cluster is derived. The slopes of the mass functions of the open clusters range from 1.31 to 1.58, which are in agreement with Salpeters initial mass function. We also found integrated absolute magnitudes varying from -4.08 to -3.40 for the clusters.
We present the broad band UBVI CCD photometric investigations in the region of the two open clusters Haffner 11 and Czernik 31. The radii of the clusters are determined as 3.5 arcmin and 3.0 arcmin for Haffner 11 and Czernik 31 respectively. Using tw o colour (U-B) versus (B-V) diagram we determine the reddening E(B-V) = 0.50+/-0.05 mag and 0.48+/-0.05 mag for the cluster Haffner 11 and Czernik 31 respectively. Using 2MASS JHKs and optical data, we determined E(J-K) = 0.27+/-0.06 mag and E(V-K) = 1.37+/-0.06 for Haffner 11 and E(J-K) = 0.26+/-0.08 mag and E(V-K) = 1.32+/-0.08 mag for Czernik 31. Our analysis indicate normal interstellar extinction law in the direction of both the clusters. Distance of the clusters is determined as 5.8+/-0.5 Kpc for Haffner 11 and 3.2+/-0.3 Kpc for Czernik 31 by comparing the ZAMS with the CM diagram of the clusters. The age of the cluster has been estimated as 800+/-100 Myr for Haffner 11 and 160+/-40 Myr for Czernik 31 using the stellar isochrones of metallicity Z = 0.019.
We introduce a new binary detection technique, Binary INformation from Open Clusters using SEDs (binocs), which we show is able to determine reliable stellar multiplicity and masses over a much larger mass range than current approaches. This new tech nique determines accurate component masses of binary and single systems of the open clusters main sequence by comparing observed magnitudes from multiple photometric filters to synthetic star spectral energy distributions (SEDs) allowing systematically probing the binary population for low mass stars in clusters for 8 well-studied open clusters. We provide new deep, infrared photometric catalogs (1.2 - 8.0 microns) for the key open clusters NGC 1960 (M36), NGC 2099 (M37), NGC 2420, and NGC2682 (M67), using observation from NOAO/NEWFIRM and Spitzer}/IRAC. Using these deep multi-wavelength catalogs, the binocs method is applied to these clusters to determine accurate component masses for unresolved cluster binaries. We explore binary fractions as a function of cluster age, Galactic location and metallicity.
We show the preliminary analysis of some Galactic stellar clusters (GSCls) candidates and the results of the analysis of two new interesting GSCls found in the VISTA Variables in the Via Lactea (VVV) Survey. The VVV photometric data are being used al so to improve the knowledge of the Galactic structure. The photometric data are obtained with the new automatic photometric pipeline VVV-SkZ_pipeline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا