ترغب بنشر مسار تعليمي؟ اضغط هنا

Polycyclic Aromatic Hydrocarbon and Mid-Infrared Continuum Emission in a z>4 Submillimeter Galaxy

421   0   0.0 ( 0 )
 نشر من قبل Dominik Riechers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of 6.2um polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7um continuum emission in the z=4.055 submillimeter galaxy GN20, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. This represents the first detection of PAH emission at z>4. The strength of the PAH emission feature is consistent with a very high star formation rate of ~1600Msun/yr. We find that this intense starburst powers at least ~1/3 of the faint underlying 6um continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6um AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.



قيم البحث

اقرأ أيضاً

112 - T.Takagi , Y.Ohyama , T.Goto 2010
Using an AKARI multi-wavelength mid-infrared (IR) survey, we identify luminous starburst galaxies at z> 0.5 based on the PAH luminosity, and investigate the nature of these PAH-selected starbursts. An extragalactic survey with AKARI towards the north ecliptic pole (NEP), the NEP-Deep survey, is unique in terms of a comprehensive wavelength coverage from 2 to 24um using all 9 photometric bands of the InfraRed Camera (IRC). This survey allows us to photometrically identify galaxies whose mid-IR emission is clearly dominated by PAHs. We propose a single colour selection method to identify such galaxies, using two mid-IR flux ratios at 11-to-7um and 15-to-9um (PAH-to-continuum flux ratio in the rest-frame), which are useful to identify starburst galaxies at z~0.5 and 1, respectively. We perform a fitting of the spectral energy distributions (SEDs) from optical to mid-IR wavelengths, using an evolutionary starburst model with a proper treatment of radiative transfer (SBURT), in order to investigate their nature. The SBURT model reproduces observed optical-to-mid-IR SEDs of more than a half of PAH-selected galaxies. Based on the 8um luminosity, we find ultra luminous infrared galaxies (ULIRGs) among PAH-selected galaxies. Their PAH luminosity is higher than local ULIRGs with a similar luminosity, and the PAH-to-total IR luminosity ratio is consistent with that of less luminous starburst galaxies. They are a unique galaxy population at high redshifts and we call these PAH-selected ULIRGs PAH-luminous galaxies. Although they are not as massive as submillimetre galaxies at z~2, they have the stellar mass of >3x10^{10} Msun and therefore moderately massive.
We examine polycyclic aromatic hydrocarbon (PAH), dust and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE and NGC 6522. These fields are approximately centered on (l, b) = (0.0{deg}, 1.0{deg}), (0.0{deg}, -1.0{deg}), (0.4{deg}, -2.1{deg}) and (1.0{deg}, -3.8{deg}), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations---they reside on or near boundaries of a 7 Myr-old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated H{alpha} emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have comparable temperatures to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.
We study the Polycyclic Aromatic Hydrocarbons (PAH) bands, ionic emission lines, and Mid-infrared continuum properties, in a sample of 171 emission line galaxies taken from literature plus 15 new active galactic nuclei (AGN) Spitzer spectra. The cont inuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T=150-300K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7$mu$m) and the forbidden emission lines of [Si II] 34.8$mu$m, [Ar II] 6.9, [S III] 18.7 and 33.4 were detected in all the Starbursts and in ~80% of the Seyfert~2. Taking under consideration only the PAH bands at 7.7$mu$m, 11.3$mu$m, and 12.7$mu$m we find they are present in ~80% of the Seyfert 1, while only half of this type of activity show the 6.2$mu$m and 8.6 PAH bands. The observed intensities ratios for neutral and ionized PAHs (6.2/7.7 x 11.3/7.7) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH (> 180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7) and the neutral PAH bands (8.6 and 11.3) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 and 11.3 bands is nearly constant with the increase of [Ne III]15.5/[Ne II], indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence with [Ne III]/[Ne II], suggesting that the PAH, emitting either ionized (7.7) or neutral (11.3) bands, may be destroyed with the increase of the hardness of the radiation field.
194 - E. R. Micelotta 2009
Context: PAHs are thought to be a ubiquitous and important dust component of the interstellar medium. However, the effects of their immersion in a hot (post-shock) gas have never before been fully investigated. Aims: We study the effects of energetic ion and electron collisions on PAHs in the hot post-shock gas behind interstellar shock waves. Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the carbon atom loss threshold, in H II regions and in the hot post-shock gas, for temperatures ranging from 10^3 to 10^8 K. Results: PAH destruction is dominated by He collisions at low temperatures (T < 3x10^4 K), and by electron collisions at higher temperatures. Smaller PAHs are destroyed faster for T < 10^6 K, but the destruction rates are roughly the same for all PAHs at higher temperatures. The PAH lifetime in a tenuous hot gas (n_H ~ 0.01 cm^-3, T ~ 10^7 K), typical of the coronal gas in galactic outflows, is found to be about thousand years, orders of magnitude shorter than the typical lifetime of such objects. Conclusions: In a hot gas, PAHs are principally destroyed by electron collisions and not by the absorption of X-ray photons from the hot gas. The resulting erosion of PAHs occurs via C_2 loss from the periphery of the molecule, thus preserving the aromatic structure. The observation of PAH emission from a million degree, or more, gas is only possible if the emitting PAHs are ablated from dense, entrained clumps that have not yet been exposed to the full effect of the hot gas.
We use the measured fluxes of polycyclic aromatic hydrocarbon (PAH) emission features at 6.2, 7.7, 8.6, 11.0 and 11.2 $mu$m in the reflection nebula NGC 2023 to carry out a principal component analysis (PCA) as a means to study previously reported va riations in the PAH emission. We find that almost all of the variations (99%) can be explained with just two parameters -- the first two principal components (PCs). We explore the characteristics of these PCs and show that the first PC ($PC_{1}$), which is the primary driver of the variation, represents the amount of emission of a mixture of PAHs with ionized species dominating over neutral species. The second PC ($PC_{2}$) traces variations in the ionization state of the PAHs across the nebula. Correlations of the PCs with various PAH ratios show that the 6.2 and 7.7 $mu$m bands behave differently than the 8.6 and 11.0 $mu$m bands, thereby forming two distinct groups of ionized bands. We compare the spatial distribution of the PCs to the physical conditions, in particular to the strength of the radiation field, $G_{0}$, and the $G_{0}/n_{H}$ ratio and find that the variations in $PC_{2}$, i.e. the ionization state of PAHs are strongly affected by $G_{0}$ whereas the amount of PAH emission (as traced by $PC_{1}$) does not depend on $G_0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا