ترغب بنشر مسار تعليمي؟ اضغط هنا

Route from spontaneous decay to complex multimode dynamics in cavity QED

136   0   0.0 ( 0 )
 نشر من قبل Dmitry Krimer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on the case where the emitter is resonant with high-frequency cavity modes. Based on a Greens function technique suited for open photonic structures, we study the crossovers between three distinct regimes as the coupling strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate, (ii) underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed revivals. The final multimode strong coupling regime (iii) gives rise to quantum revivals of the atomic inversion on a time scale associated with the cavity round-trip time. We show that the crucial parameter to capture the crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.



قيم البحث

اقرأ أيضاً

We introduce a new multimode cavity QED architecture for superconducting circuits which can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediate d by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two-qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102MHz and demonstrate suppressed interactions off-resonance of 10kHz when the qubits are ~600MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasi-adiabatic loading of single photons into the multimode cavity in 25ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of $4/e sim 1.5$ as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con version processes. The conversion can be exquisitely controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off resonance. Considering recent experimental advances in ultrastrong coupling for circuit QED and other systems, we believe that our scheme can be implemented using available technology.
We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses. When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are found between the spin ens emble and the cavity mode which we describe very accurately, including the dephasing effect of the inhomogeneous spin broadening. We demonstrate that a precise knowledge of this broadening is crucial both for a qualitative and a quantitative understanding of the temporal spin-cavity dynamics. On this basis we show that coherent oscillations between the spin ensemble and the cavity can be enhanced by a few orders of magnitude, when driving the system with pulses that match special resonance conditions. Our theoretical approach is tested successfully with an experiment based on an ensemble of negatively charged nitrogen-vacancy (NV) centers in diamond strongly coupled to a superconducting coplanar single-mode waveguide resonator.
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED). The achievement of strong coupling, where the coupling between a single atom and fundamental cavity mode exceeds the decay rates, was a major milestone that opened the doors to a multitude of new investigations. Here we introduce multimode strong coupling (MMSC), where the coupling is comparable to the free spectral range (FSR) of the cavity, i.e. the rate at which a qubit can absorb a photon from the cavity is comparable to the round trip transit rate of a photon in the cavity. We realize, via the circuit QED architecture, the first experiment accessing the MMSC regime, and report remarkably widespread and structured resonance fluorescence, whose origin extends beyond cavity enhancement of sidebands. Our results capture complex multimode, multiphoton processes, and the emergence of ultranarrow linewidths. Beyond the novel phenomena presented here, MMSC opens a major new direction in the exploration of light-matter interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا