ﻻ يوجد ملخص باللغة العربية
Massive, highly magnetized white dwarfs with fields up to $10^9$ G have been observed and theoretically used for the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior fields up to $10^{18}$ G, have been recently purported to obey a new maximum mass limit, $M_{rm max}approx 2.58~M_odot$, which largely overcomes the traditional Chandrasekhar value, $M_{rm Ch}approx 1.44~M_odot$. Such a much larger limit would make these astrophysical objects viable candidates for the explanation of the superluminous population of type Ia supernovae. We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse $beta$-decay, and pycnonuclear fusion reactions are of most relevance for the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the canonical Chandrasekhar mass limit of white dwarfs has to be still applied.
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present p
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differe
The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium configurations. The equation of state, which takes
Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the pr