ﻻ يوجد ملخص باللغة العربية
The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.
Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matt
Within the microscopic theory of the normal-state pseudogap state, the doping and temperature dependence of the charge dynamics in doped cuprates is studied in the whole doping range from the underdoped to heavily overdoped. The conductivity spectrum
Fundamental conservation laws predict ballistic, i.e., dissipationless transport behaviour in one-dimensional quantum magnets. Experimental evidence, however, for such anomalous transport has been lacking ever since. Here we provide experimental evid
We study the impact of a weak bond disorder on the spinon heat transport in the S=1/2 antiferromagnetic (AFM) Heisenberg chain material Sr_{1-x}Ca_xCuO_2. We observe a drastic suppression in the magnetic heat conductivity kappa_mag even at tiny disor
CaCo2As2 is a unique itinerant system having strong magnetic frustration. Here we report the effect of electron doping on the physical properties resulting from Ni substitutions for Co. The A-type antiferromagnetic transition temperature TN = 52 K fo