ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared Variability among YSOs in the Star Formation Region Cygnus OB7

223   0   0.0 ( 0 )
 نشر من قبل Scott J. Wolk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Scott J. Wolk




اسأل ChatGPT حول البحث

We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 square degree region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer (WISE), we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ~17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on time scales of a few years. We divide the variability into four observational classes: 1) stars with periodic variability stable over long timescales, 2) variables which exhibit short-lived cyclic behavior, 3) long duration variables, and 4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of < 1Myr, with at least one individual, wildly varying, source ~ 100,000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.



قيم البحث

اقرأ أيضاً

111 - Scott J. Wolk 2015
We present an IR-monitoring survey with the $Spitzer$ Space Telescope of the star forming region GGD 12-15. Over 1000 objects were monitored including about 350 objects within the central 5 arcminutes which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability (YSOVAR) project. The region was also the subject of a contemporaneous 67ks $Chandra$ observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5 arcminutes are young stellar objects based on a combination of their spectral energy distribution, IR variability and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-IR variability. There are 39 periodic sources, all but one of these is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded young stellar objects. Most of the Class~I/II objects exhibit redder colors in a fainter state, compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR lightcurves. However, we find that X-ray detected Class II sources have longer timescales for change in the mid-IR than a similar set of non-X-ray detected Class IIs.
We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using 3 seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photomet ry on 9,200 stars down to J=17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main sequence stars, including 24 which are newly discovered. We analyze those stars and find the NIR excesses are significantly variable. All 9,200 stars were monitored for photometric variability; among the field star population, about 160 exhibited near-infrared variability (1.7% of the sample). Of the 30 YSOs (young stellar objects), 28 of them (93%) are variable at a significant level. 25 of the 30 YSOs have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since 2MASS observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short timescales than is attributable to rotation alone or captured in static disk models.
207 - Scott J. Wolk , Thomas S. Rice , 2013
We present a subset of the results of a three season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star forming region. In this paper, we focus on the field star population. Using three s easons of UKIRT J, H and K band observations spanning 1.5 years, we obtained high-quality photometry on 9,200 stars down to J=17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk bearing stars we identify 149 variables - 1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly < 2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool star spots. The remaining ~60 stars showed variations which appear to be purely stochastic.
Context. Outflows and jets are the first signposts of ongoing star formation processes in any molecular cloud, yet their study in optical bands provides limited results due to the large extinction present. Near-infrared unbiased wide-field observatio ns in the H2 1-0 S(1) line at 2.122{mu}m alleviates the problem, enabling us to detect more outflows and trace them closer to their driving sources. Aims. As part of a large-scale multi-waveband study of ongoing star formation in the Braid Nebula Star Formation region, we focus on a one square degree region that includes Lynds Dark Nebula 1003 and 1004. Our goal is to find all of the near-infrared outflows, uncover their driving sources and estimate their evolutionary phase. Methods. We use near-infrared wide-field observations obtained with WFCAM on UKIRT, in conjunction with previously-published optical and archival MM data, to search for outflows and identify their driving sources; we subsequently use colour-colour analysis to determine the evolutionary phase of each source. Results. Within a one square degree field we have identified 37 complex MHOs, most of which are new. After combining our findings with other wide-field, multi-waveband observations of the same region we were able to discern 28 outflows and at least 18 protostars. Our analysis suggests that these protostars are younger and/or more energetic than those of the Taurus-Auriga region. The outflow data enable us to suggest connection between outflow ejection and repetitive FU Ori outburst events. We also find that star formation progresses from W to E across the investigated region.
We present observations of newly discovered 24 micron circumstellar structures detected with the Multiband Imaging Photometer for Spitzer (MIPS) around three evolved stars in the Cygnus-X star forming region. One of the objects, BD+43 3710, has a bip olar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 micron emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 micron Infrared Array Camera (IRAC) bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 micron emission from the inner ring extends ~1.2 arcmin beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 micron emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 may simply be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا