ﻻ يوجد ملخص باللغة العربية
Dissipative wave equations with critical quintic nonlinearity and damping term involving the fractional Laplacian are considered. The additional regularity of energy solutions is established by constructing the new Lyapunov-type functional and based on this, the global well-posedness and dissipativity of the energy solutions as well as the existence of a smooth global and exponential attractors of finite Hausdorff and fractal dimension is verified.
We report on new results concerning the global well-posedness, dissipativity and attractors of the damped quintic wave equations in bounded domains of R^3.
The dissipative wave equation with a critical quintic nonlinearity in smooth bounded three dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global a
We give a detailed study of attractors for measure driven quintic damped wave equations with periodic boundary conditions. This includes uniform energy-to-Strichartz estimates, the existence of uniform attractors in a weak or strong topology in the e
The paper gives a detailed study of long-time dynamics generated by weakly damped wave equations in bounded 3D domains where the damping exponent depends explicitly on time and may change sign. It is shown that in the case when the non-linearity is s
It is believed or conjectured that the semilinear wave equations with scattering space dependent damping admit the Strauss critical exponent, see Ikehata-Todorova-Yordanov cite{ITY}(the bottom in page 2) and Nishihara-Sobajima-Wakasugi cite{N2}(conje