ﻻ يوجد ملخص باللغة العربية
We examine electron transfer between two quantum states in the presence of a dissipative environment represented as a set of independent harmonic oscillators. For this simple model, the Marcus transfer rates can be derived and we show that these rates are associated to an explicit expression for the environment correlation time. We demonstrate that as a manifestation of the Goldilocks principle, the optimal transfer is governed by a single parameter which is equal to just the inverse root square of two.
In the pioneering work by R. A. Marcus, the solvation effect on electron transfer (ET) processes was investigated, giving rise to the celebrated nonadiabatic ET rate formula. In this work, on the basis of the thermodynamic solvation potentials analys
Electron transfer organic reaction rates are considered employing the classic physical picture of Marcus wherein the heats of reaction are deposited as the energy of low frequency mechanical oscillations of reconfigured molecular positions. If such e
We devise a scheme to characterize tunneling of an excess electron shared by a pair of tunnel-coupled dangling bonds on a silicon surface -- effectively a two-level system. Theoretical estimates show that the tunneling should be highly coherent but t
Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. He
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots.