ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of fermionic dark matter on properties of neutron stars

186   0   0.0 ( 0 )
 نشر من قبل Wei-Zhou Jiang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By assuming that only gravitation exists between dark matter (DM) and normal matter (NM), we study the effects of fermionic DM on the properties of neutron stars using the two-fluid Tolman-Oppenheimer-Volkoff formalism. It is found that the mass-radius relationship of the DM admixed neutron stars (DANSs) depends sensitively on the mass of DM candidates, the amount of DM, and interactions among DM candidates. The existence of DM in DANSs results in a spread of mass-radius relationships that cannot be interpreted with a unique equilibrium sequence. In some cases, the DM distribution can surpass the NM distribution to form DM halo. In particular, it is favorable to form an explicit DM halo, provided the repulsion of DM exists. It is interesting to find that the difference in particle number density distributions in DANSs and consequently in star radii caused by various density dependencies of nuclear symmetry energy tends to disappear as long as the repulsion of accumulated DM is sufficient. These phenomena indicate that the admixture of DM in neutron stars can significantly affect the astrophysical extraction of nuclear equation of state by virtue of neutron star measurements. In addition, the effect of the DM admixture on the star maximum mass is also investigated.



قيم البحث

اقرأ أيضاً

Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat e of dense matter. We review how these constraints are formulated and describe the implications they have for neutron stars and core-collapse supernovae. We also examine thermal properties of dense matter, which are important for supernovae and neutron star mergers, but which cannot be nearly as well constrained at this time by experiment. In addition, we consider the role of the equation of state in medium-energy heavy-ion collisions.
Dark Matter constitutes most of the matter in the presently accepted cosmological model for our Universe. The extreme conditions of ordinary baryonic matter, namely high density and compactness, in Neutron Stars make these objects suitable to gravita tionally accrete such a massive component provided interaction strength between both, luminous and dark sectors, at current experimental level of sensitivity. We consider several different DM phenomenological models from the myriad of those presently allowed. In this contribution we review astrophysical aspects of interest in the interplay of ordinary matter and a fermionic light Dark Matter component. We focus in the interior nuclear medium in the core and external layers, i.e. the crust, discussing the impact of a novel dark sector in relevant stellar quantities for (heat) energy transport such as thermal conductivity or emissivities.
We construct parameter sets of the relativistic mean-field model fitted to the recent constraints on the asymmetry energy $J$ and the slope parameter $L$ for pure neutron matter. We find cases of unphysical behaviour, i.e. the appearance of negative pressures, for stiff parameter sets with low values of the effective mass $m^*/m$. In some cases the equation of state of pure neutron matter turns out to be outside the allowed band given by chiral effective field theory. The mass-radius relations of neutron stars for all acceptable parameter sets shows a maximum mass in excess of $2M_odot$ being compatible with pulsar mass measurements. Given the constraints on the model in the low-density regime coming from chiral effective theory, we find that the radius of a $1.4M_odot$ neutron star is nearly independent on the value of $L$. This is in contrast to some previous claims for a strong connection of the slope parameter with the radius of a neutron star. In fact, the mass-radius relation turns out to depend only on the isoscalar parameters of symmetric matter. The constraints of GW170817 on the tidal deformability and on the radius are also discussed.
The form of the nuclear symmetry energy $E_s$ around saturation point density leads to a different crust-core transition point in the neutron star and affect the crust properties. We show that the knowledge about $E_s$ close to the saturation point i s not sufficient, because the very low density behaviour is relevant. We also claim that crust properties are strongly influenced by the very high density behavior of $E_s$, so in order to conclude about the form of low density part of the symmetry energy one must isolate properly the high density part.
Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However ther e is now a large consensus that an elusive sector of matter in the Universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the Universe
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا