ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum diffusion of atoms and nanoparticles in an optical trap formed by sequences of counter-propagating light pulses

178   0   0.0 ( 0 )
 نشر من قبل Victor Romanenko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The motion of atoms and nanoparticles in a trap formed by sequences of counter-propagating light pulses has been analyzed. The atomic state is described by a wave function constructed with the use of the Monte Carlo method, whereas the atomic motion is considered in the framework of classical mechanics. The effects of the momentum diffusion associated with the spontaneous radiation emission by excited atoms and the pulsed character of the atom-to-field interaction on the motion of a trapped atom or nanoparticle are estimated. The motion of a trapped atom is shown to be slowed down for properly chosen parameters of the atom-to-field interaction, so that the atom oscillates around the antinodes of a non-stationary standing wave formed by counter-propagating light pulses at the point where they collide.



قيم البحث

اقرأ أيضاً

We explore various models for the pattern forming instability in a laser-driven cloud of cold two-level atoms with a plane feedback mirror. Focus is on the combined treatment of nonlinear propagation in a diffractively thick medium and the boundary c ondition given by feedback. The combined presence of purely transverse transmission gratings and reflection gratings on wavelength scale is addressed. Different truncation levels of the Fourier expansion of the dielectric susceptibility in terms of these gratings are discussed and compared to literature. A formalism to calculate the exact solution for the homogenous state in presence of absorption is presented. The relationship between the counterpropagating beam instability and the feedback instability is discussed. Feedback reduces the threshold by a factor of two under optimal conditions. Envelope curves which bound all possible threshold curves for varying mirror distances are calculated. The results are comparing well to experimental results regarding the observed length scales and threshold conditions. It is clarified where the assumption of a diffractively thin medium is justified.
We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting hetero dyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.
141 - Pierre Lemonde 2005
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunnelling leads to a residual sensitivity to the atom dynamics hence requiring large depths (50 to $100 E_r$ for Sr) to avoid any frequency shift or line broadening of the atomic transition at the $10^{-17}-10^{-18}$ level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g. higher order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunnelling. We show that using the Earths gravity, much shallower traps (down to $5 E_r$ for Sr) can be used for the same accuracy goal.
We report on cooling of an atomic cesium gas closely above an evanescent-wave atom mirror. At high densitities, optical cooling based on inelastic reflections is found to be limited by a density-dependent excess temperature and trap loss due to ultra cold collisions involving repulsive molecular states. Nevertheless, very good starting conditions for subsequent evaporative cooling are obtained. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude.
136 - C. Y. Yang , P. Halder , O. Appel 2007
We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of $^{1}$S$_{0}$ calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a w ide range of atomic species. Our starting point is a reservoir of moderately cold ($approx 300 mu$K) metastable $^{3}$P$_{2}$-atoms prepared by means of a magneto-optic trap (triplet-MOT). A focused 532 nm laser beam produces a strongly elongated optical potential for $^{1}$S$_{0}$-atoms with up to 350 $mu$K well depth. A weak focused laser beam at 430 nm, carefully superimposed upon the ODT beam, selectively pumps the $^{3}$P$_{2}$-atoms inside the capture volume to the singlet state, where they are confined by the ODT. The triplet-MOT perpetually refills the capture volume with $^{3}$P$_{2}$-atoms thus providing a continuous stream of cold atoms into the ODT at a rate of $10^7 $s$^{-1}$. Limited by evaporation loss, in 200 ms we typically load $5 times 10^5$ atoms with an initial radial temperature of 85 $mu$K. After terminating the loading we observe evaporation during 50 ms leaving us with $10^5$ atoms at radial temperatures close to 40 $mu$K and a peak phase space density of $6.8 times 10^{-5}$. We point out that a comparable scheme could be employed to load a dipole trap with $^{3}$P$_{0}$-atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا