ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric Ejecta Distribution in SN 1006

373   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Uchida
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from deep X-ray observations (~400 ks in total) of SN 1006 by the X-ray astronomy satellite Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and Fe. The observed abundance pattern in the ejecta components is in good agreement with that predicted by a standard model of Type Ia supernovae (SNe). The spatially resolved analysis reveals that the distribution of the O-burning and incomplete Si-burning products (Si, S, and Ar) is asymmetric, while that of the C-burning products (O, Ne, and Mg) is relatively uniform in the SNR interior. The peak position of the former is clearly shifted by 5 (~3.2 pc at a distance of 2.2 kpc) to the southeast from the SNRs geometric center. Using the SNR age of ~1000 yr, we constrain the velocity asymmetry (in projection) of ejecta to be ~3100 km/s. The abundance of Fe is also significantly higher in the southeast region than in the northwest region. Given that the non-uniformity is observed only among the heavier elements (Si through Fe), we argue that SN 1006 originates from an asymmetric explosion, as is expected from recent multi-dimensional simulations of Type Ia SNe, although we cannot eliminate the possibility that an inhomogeneous ambient medium induced the apparent non-uniformity. Possible evidence for the Cr K-shell line and line broadening in the Fe K-shell emission is also found.



قيم البحث

اقرأ أيضاً

Aims: We want to probe the physics of fast collision-less shocks in supernova remnants. In particular, we are interested in the non-equilibration of temperatures and particle acceleration. Specifically, we aim to measure the oxygen temperature with r egards to the electron temperature. In addition, we search for synchrotron emission in the northwestern thermal rim. Methods: This study is part of a dedicated deep observational project of SN 1006 using XMM-Newton, which provides us with currently the best resolution spectra of the bright northwestern oxygen knot. We aim to use the reflection grating spectrometer to measure the thermal broadening of the O vii line triplet by convolving the emission profile of the remnant with the response matrix. Results: The line broadening was measured to be {sigma}_e = 2.4 pm 0.3 eV, corresponding to an oxygen temperature of 275$^{+72}_{-63}$ keV. From the EPIC spectra we obtain an electron temperature of 1.35 pm 0.10 keV. The difference in temperature between the species provides further evidence of non-equilibration of temperatures in a shock. In addition, we find evidence for a bow shock that emits X-ray synchrotron radiation, which is at odds with the general idea that due to the magnetic field orientation only in the NE and SW region X-ray synchrotron radiation should be emitted. We find an unusual H{alpha} and X-ray synchrotron geometry, in that the H{alpha} emission peaks downstream of the synchrotron emission. This may be an indication for a peculiar H{alpha} shock, in which the density is lower and neutral fraction are higher than in other supernova remnants, resulting in a peak in H{alpha} emission further downstream of the shock.
140 - M. Miceli , F. Acero , G. Dubner 2014
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment, though interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentati on in the southwestern part of the shock front and the HI maps show an isolated cloud (southwestern cloud) having the same velocity as the northwestern cloud and whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive HI data, obtained combining single dish and interferometric observations. We found that the best-fit value of the N_H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The amount of the N_H variations corresponds perfectly with the HI column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for gamma-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$ , and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
Like many young supernova remnants, SN 1006 exhibits what appear to be clumps of ejecta close to or protruding beyond the main blast wave. In this paper we examine 3 such protrusions along the east rim. They are semi-aligned with ejecta fingers behin d the shock-front, and exhibit emission lines from O VII and O VIII. We first interpret them in the context of an upstream medium modified by the saturated nonresonant Bell instability which enhances the growth of Rayleigh-Taylor instabilities when advected postshock. We discuss their apparent periodicity if the spacing is determined by properties of the remnant or by a preferred size scale in the cosmic ray precursor. We also briefly discuss the alternative that these structures have an origin in the ejecta structure of the explosion itself. In this case the young evolutionary age of SN 1006 would imply density structure within the outermost layers of the explosion with potentially important implications for deflagration and detonation in thermonuclear supernova explosion models.
We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 micron image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant s hell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 micron emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lower -- a relic effect from an earlier epoch when the shock was encountering a lower density -- but higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM -- as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SN Ia remnants, SN 1006 shows no evidence for dust grain formation in the supernova ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا