ﻻ يوجد ملخص باللغة العربية
We perform an exact diagonalization study of the topological order in topological flat band models through calculating entanglement entropy and spectra of low energy states. We identify multiple independent minimal entangled states, which form a set of orthogonal basis states for the ground-state manifold. We extract the modular transformation matrices S (U) which contains the information of mutual (self) statistics, quantum dimensions and fusion rule of quasi-particles. Moreover, we demonstrate that these matrices are robust and universal in the whole topological phase against different perturbations until the quantum phase transition takes place.
We present a pedagogical review of the physics of fractional Chern insulators with a particular focus on the connection to the fractional quantum Hall effect. While the latter conventionally arises in semiconductor heterostructures at low temperature
Monolayer graphene placed with a twist on top of AB-stacked bilayer graphene hosts topological flat bands in a wide range of twist angles. The dispersion of these bands and gaps between them can be efficiently controlled by a perpendicular electric f
The topological order is equivalent to the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order through entangleme
We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol a FQH state is subjected to a sudden chang
A simple one-dimensional model is proposed, in which N spinless repulsively interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and the wavefunctions of this system strongly resemble the spectrum and wavefunctions