ﻻ يوجد ملخص باللغة العربية
A small but growing number of people are finding interesting parallels between ecosystems as studied by ecologists (think of a Savanna or the Amazon rain forest or a Coral reef) and tumours1-3. The idea of viewing cancer from an ecological perspective has many implications but fundamentally, it means that we should not see cancer just as a group of mutated cells. A more useful definition of cancer is to consider it a disruption in the complex balance of many interacting cellular and microenvironmental elements in a specific organ. This perspective means that organs undergoing carcinogenesis should be seen as sophisticated ecosystems in homeostasis that cancer cells can disrupt. It also makes cancer seem even more complex but may ultimately provides isights that make it more treatable. Here we discuss how ecological principles can be used to better understand cancer progression and treatment, using several mathematical and computational models to illustrate our argument.
In this review we summarize our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its pheno
Tumour progression has been described as a sequence of traits or phenotypes that cells have to acquire if the neoplasm is to become an invasive and malignant cancer. Although the genetic mutations that lead to these phenotypes are random, the process
Atrial fibrillation (AF) is a leading cause of morbidity and mortality. AF prevalence increases with age, which is attributed to pathophysiological changes that aid AF initiation and perpetuation. Current state-of-the-art models are only capable of s
Environmental and genetic mutations can transform the cells in a co-operating healthy tissue into an ecosystem of individualistic tumour cells that compete for space and resources. Various selection forces are responsible for driving the evolution of
A novel multifunctional nanodevice based in doxorubicin (DOX)- loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists o