ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy levels of Th+ between 7.3 and 8.3 eV

132   0   0.0 ( 0 )
 نشر من قبل Ekkehard Peik
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using resonant two-step laser excitation of trapped 232Th+ ions, we observe 43 previously unknown energy levels within the energy range from 7.3 to 8.3 eV. The high density of states promises a strongly enhanced electronic bridge excitation of the 229mTh nuclear state that is expected in this energy range. From the observation of resonantly enhanced three-photon ionization of Th+, the second ionization potential of thorium can be inferred to lie within the range between 11.9 and 12.3 eV. Pulsed laser radiation in a wide wavelength range from 237 to 289 nm is found to provide efficient photodissociation of molecular ions that are formed in reactions of Th+ with impurities in the buffer gas, leading to a significantly increased storage time for Th+ in the ion trap.



قيم البحث

اقرأ أيضاً

129 - A. A. Rangelov , J. Piilo , 2010
We calculate analytically the probabilities for intuitive and counterintuitive transitions in a three-state system, in which two parallel energies are crossed by a third, tilted energy. The state with the tilted energy is coupled to the other two sta tes in a chainwise linkage pattern with constant couplings of finite duration. The probability for a counterintuitive transition is found to increase with the square of the coupling and decrease with the squares of the interaction duration, the energy splitting between the parallel energies, and the tilt (chirp) rate. Physical examples of this model can be found in coherent atomic excitation and optical shielding in cold atomic collisions.
Relative cross sections for the valence shell photoionisation (PI) of $rm ^2S$ ground level and $rm ^2D$ metastable Ca$^{+}$ ions were measured with high energy resolution by using the ion-photon merged-beams technique at the Advanced Light Source. O verview measurements were performed with a full width at half maximum bandpass of $Delta E =17$~meV, covering the energy range 20~eV -- 56~eV. Details of the PI spectrum were investigated at energy resolutions reaching the level of $Delta E=3.3$~meV. The photon energy scale was calibrated with an uncertainty of $pm5$~meV. By comparison with previous absolute measurements %by Kjeldsen et al in the energy range 28~eV -- 30.5~eV and by Lyon et al in the energy range 28~eV -- 43~eV the present experimental high-resolution data were normalised to an absolute cross-section scale and the fraction of metastable Ca$^{+}$ ions that were present in the parent ion beam was determined to be 18$pm$4%. Large-scale R-matrix calculations using the Dirac Coulomb approximation and employing 594 levels in the close-coupling expansion were performed for the Ca$^{+}(3s^23p^64s~^2textrm{S}_{1/2})$ and Ca$^{+}(3s^2 3p^6 3d~^2textrm{D}_{3/2,5/2})$ levels. The experimental data are compared with the results of these calculations and previous theoretical and experimental studies.
We continue the analysis of quantum two-particle bound systems we have started in (Kholmetskii, A.L., Missevitch, O.V. and Yarman, T. Phys. Scr., 82 (2010), 045301), where we re-postulated the Dirac equation for the bound electron in an external EM f ield based on the requirement of total momentum conservation, when its EM radiation is prohibited. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels like the standard theory. Now we apply the PBFT to the analysis of hyperfine interactions and show the appearance of some important corrections to the energy levels (the 1S-2S interval and hyperfine spin-spin splitting in positronium, 1S and 2S-2P Lamb shift in hydrogen), which remedies considerably the discrepancy between theoretical predictions and experimental results. In particular, the corrected 1S-2S interval and the spin-spin splitting in positronium practically eliminate the available up to date deviation between theoretical and experimental data. The re-estimated classic 2S-2P Lamb shift as well as ground state Lamb shift in the hydrogen atom lead to the proton charge radius rp=0.837(8) fm (from 2S-2P Lamb shift), and rp=0.840(24) fm (from 1S Lamb shift), which corresponds to the latest estimation of proton size via the measurement of 2S-2P Lamb shift in muonic hydrogen, i.e. rp=0.84184(67) fm. We also emphasize the universal character of PBFT, which is applicable to heavy atoms, too, and analyze 2S-2P interval in Li-like uranium. We show that the corrections we introduced provide a better correspondence between the calculated and experimental data than that furnished by the standard approach. The results obtained support our principal idea of the enhancement of the bound EM field in the absence of EM radiation for quantum bound systems.
Stimulated emission and absorption are two fundamental processes of light-matter interaction, and the coefficients of the two processes should be equal in general. However, we will describe a generic method to realize significant difference between t he stimulated emission and absorption coefficients of two nondegenerate energy levels, which we refer to as nonreciprocal transition. As a simple implementation, a cyclic three-level atom system, comprising two nondegenerate energy levels and one auxiliary energy level, is employed to show nonreciprocal transition via a combination of synthetic magnetism and reservoir engineering. Moreover, a single-photon nonreciprocal transporter is proposed using two one dimensional semi-infinite coupled-resonator waveguides connected by an atom with nonreciprocal transition effect. Our work opens up a route to design atom-mediated nonreciprocal devices in a wide range of physical systems.
Using the multiconfiguration Dirac-Hartree-Fock and the relativistic configuration interaction methods, a consistent set of transition energies and radiative transition data for the main states of the $2s^2 2p^4$, $2s 2p^5$, $2p^6$, $2s^2 2p^3 3s$, $ 2s^2 2p^3 3p$, $2s^2 2p^3 3d$, $2s 2p^4 3s$, $2s 2p^4 3p$, and $2s 2p^4 3d$ configurations in O-like Ions between Ar XI ($Z = 18$) and Cr XVII ($Z = 24$) is provided. Our data set is compared with the NIST compiled values and previous calculations. The data are accurate enough for identification and deblending of new emission lines from hot astrophysical and laboratory plasmas. The amount of data of high accuracy is significantly increased for the $n = 3$ states of several O-like ions, where experimental data are very scarce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا