ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Super-Earths Orbiting the Solar Analogue HD41248 on the edge of a 7:5 Mean Motion Resonance

220   0   0.0 ( 0 )
 نشر من قبل James Jenkins Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The number of multi-planet systems known to be orbiting their host stars with orbital periods that place them in mean motion resonances is growing. For the most part, these systems are in first-order resonances and dynamical studies have focused their efforts towards understanding the origin and evolution of such dynamically resonant commensurabilities. We report here the discovery of two super-Earths that are close to a second-order dynamical resonance, orbiting the metal-poor ([Fe/H]=-0.43 dex) and inactive G2V star HD41248. We analysed 62 HARPS archival radial velocities for this star, that until now, had exhibited no evidence for planetary companions. Using our new Bayesian Doppler signal detection algorithm, we find two significant signals in the data, with periods of 18.357 days and 25.648 days, indicating they could be part of a 7:5 second-order mean motion resonance. Both semi-amplitudes are below 3m/s and the minimum masses of the pair are 12.3 and 8.6Mearth, respectively. Our simulations found that apsidal alignment stabilizes the system, and even though libration of the resonant angles was not seen, the system is affected by the presence of the resonance and could yet occupy the 7:5 commensurability, which would be the first planetary configuration in such a dynamical resonance. Given the multitude of low-mass multiplanet systems that will be discovered in the coming years, we expect more of these second-order resonant configurations will emerge from the data, highlighting the need for a better understanding of the dynamical interactions between forming planetesimals.



قيم البحث

اقرأ أيضاً

We study the formation of the 9:7 mean motion resonance in a system of two low-mass planets ($m_{1}=m_{2}=3M_{oplus}$) embedded in a gaseous protoplanetary disk employing a full 2D hydrodynamic treatment of the disk-planet interactions. Our aim is to determine the disk properties that favor a capture of two equal-mass super-Earths into this second-order resonance. For this purpose, we have performed a series of numerical hydrodynamic simulations of the system of two super-Earths migrating in disks with a variety of different initial parameters and found conditions for the permanent or temporary locking in the 9:7 resonance. We observe that capture occurs during the convergent migration of planets if their resonance angle at the moment of arrival at the resonance assumes values in a certain range (inside a window of capture). The width of such a window depends on the relative migration and circularization rates that are determined by the disk parameters. The window is wide if the relative migration rate is slow, and it becomes narrower as the relative migration rate increases. The window will be closed if the migration rate is sufficiently high, and the capture will not take place. We illustrate also how the 9:7 resonance window of capture is affected by the initial eccentricities and the initial orbits of the planets.
We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60pm$0.02 AU and $a_c=2.24pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96pm$0.12 Mjup and $M_c=1.76pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.
AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate of 6.35 flares per day for flares with amplitudes in the range of $0.06% < f_{rm max} < 1.5%$ of the star flux. We employed a Bayesian MCMC analysis to model the five transits of AU Mic b, improving the constraints on the planetary parameters. The planet radius of $4.07pm0.17$~R$_{oplus}$ and a mean density of $1.4pm0.4$~g~cm$^{-3}$ confirms that it is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three transits and obtained an orbital period of $18.859019pm0.000016$~d and a planetary radius of $3.24pm0.16$~R$_{oplus}$, which defines it as a warm Neptune-size planet with an expected mass in the range of 2.2~M$_{oplus}$~$< M_{rm c} < $25.0~M$_{oplus}$. The two planets in the system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of $<7$~M$_{oplus}$, indicating that this planet is also likely to be inflated. As a young multi-planet system with at least two transiting planets, AU Mic becomes a key system for the study of atmospheres of infant planets and of planet-planet and planet-disk dynamics at the early stages of planetary evolution.
82 - K. Rice , L. Malavolta , A. Mayo 2018
Super-Earths belong to a class of planet not found in the Solar System, but which appear common in the Galaxy. Given that some super-Earths are rocky, while others retain substantial atmospheres, their study can provide clues as to the formation of b oth rocky planets and gaseous planets, and - in particular - they can help to constrain the role of photo-evaporation in sculpting the exoplanet population. GJ 9827 is a system already known to host 3 super-Earths with orbital periods of 1.2, 3.6 and 6.2 days. Here we use new HARPS-N radial velocity measurements, together with previously published radial velocities, to better constrain the properties of the GJ 9827 planets. Our analysis cant place a strong constraint on the mass of GJ 9827 c, but does indicate that GJ 9827 b is rocky with a composition that is probably similar to that of the Earth, while GJ 9827 d almost certainly retains a volatile envelope. Therefore, GJ 9827 hosts planets on either side of the radius gap that appears to divide super-Earths into pre-dominantly rocky ones that have radii below $sim 1.5 R_oplus$, and ones that still retain a substantial atmosphere and/or volatile components, and have radii above $sim 2 R_oplus$. That the less heavily irradiated of the 3 planets still retains an atmosphere, may indicate that photoevaporation has played a key role in the evolution of the planets in this system.
We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980 d, associated to planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses $m_bsin i sim 1.9 ,mathrm{M_{J}}$ and $m_csin i sim 0.9 ,mathrm{M_{J}}$, orbiting at semi-major axes of $a_b sim 1.75,mathrm{au}$ and $a_c sim 2.15,mathrm{au}$, respectively. Given the small orbital separation and the large minimum masses of the planets close encounters may occur within the time baseline of the observations, thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10 Myr. The result from the stability analysis indicates that the two-planets are trapped in a low-eccentricity 4:3 mean-motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making it very valuable for planet formation and orbital evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا