ﻻ يوجد ملخص باللغة العربية
The quantitative understanding of converse magnetoelectric effects, i.e., the variation of the magnetization as a function of an applied electric field, in extrinsic multiferroic hybrids is a key prerequisite for the development of future spintronic devices. We present a detailed study of the strain-mediated converse magnetoelectric effect in ferrimagnetic Fe3O4 thin films on ferroelectric BaTiO3 substrates at room temperature. The experimental results are in excellent agreement with numerical simulation based on a two-region model. This demonstrates that the electric field induced changes of the magnetic state in the Fe3O4 thin film can be well described by the presence of two different ferroelastic domains in the BaTiO3 substrate, resulting in two differently strained regions in the Fe3O4 film with different magnetic properties. The two-region model allows to predict the converse magnetoelectric effects in multiferroic hybrid structures consisting of ferromagnetic thin films on ferroelastic substrates.
Some of the Multiferroics [1] form a rare class of materials that exhibit magnetoelectric coupling arising from the coexistence of ferromagnetism and ferroelectricity, with potential for many technological applications.[2,3] Over the last decade, an
Magnetoelectric (ME) properties under rotating magnetic field H are comparatively investigated in two representative hexaferrites Y-type Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22 and Z-type Ba0.52Sr2.48Co2Fe24O41, both of which have exhibited a similar transv
Analytical expressions for the magnetoelastic anisotropy constants of cubic magnetic systems are derived for rectangular and oblique distortions originating from epitaxial growth on substrates with lower crystal symmetry. In particular, the temperatu
In contrast to the Pb-based magnetoelectric laminates (MELs), we find in the BaTiO3 and NiFe2O4 laminates (number of layers n = 5-25) that the longitudinal magnetoelectric (ME) voltage coefficient Alpha E33 becomes much larger than the transverse one
Structural, electronic and dielectric properties of high-quality ultrathin BaTiO3 films are investigated. The films, which are grown by ozone-assisted molecular beam epitaxy on Nb-doped SrTiO3 (001) substrates and having thicknesses as thin 8 unit ce