ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the electrostatic spin crossover effect in magnetic molecules

151   0   0.0 ( 0 )
 نشر من قبل Stefano Sanvito
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning tunneling microscopy (STM) can be used to detect inelastic spin transitions in magnetic nano-structures comprising only a handful of atoms. Here we demonstrate that STM can uniquely identify the electrostatic spin crossover effect, whereby the exchange interaction between two magnetic centers in a magnetic molecule changes sign as a function of an external electric field. The fingerprint of such effect is a large drop in the differential conductance as the bias increases. Crucially in the case of a magnetic dimer the spin crossover transition inverts the order between the ground state and the first excited state, but does not change their symmetry. This means that at both sides of the conductance drop associated to the spin crossover transition there are two inelastic transition between the same states. The corresponding conductance steps split identically in a magnetic field and provide a unique way to identify the electrostatic spin crossover.



قيم البحث

اقرأ أيضاً

We describe two different modes for electronically detecting an adsorbed molecule using a nanoscale transistor. The attachment of an ionic molecular target shifts the threshold voltage through modulation of the depletion layer electrostatics. A stron ger bonding between the molecule and the channel, involving actual overlap of their quantum mechanical wavefunctions, leads to scattering by the molecular traps that creates characteristic fingerprints when scanned with a backgate. We describe a theoretical approach to model these transport characteristics.
166 - N. Baadji , S. Sanvito 2012
The electronic origin of a large resistance change in nanoscale junctions incorporating spin crossover molecules is demonstrated theoretically by using a combination of density functional theory and the non-equilibrium Greens functions method for qua ntum transport. At the spin crossover phase transition there is a drastic change in the electronic gap between the frontier molecular orbitals. As a consequence, when the molecule is incorporated in a two terminal device, the current increases by up to four orders of magnitude in response to the spin change. This is equivalent to a magnetoresistance effect in excess of 3,000 %. Since the typical phase transition critical temperature for spin crossover compounds can be extended to well above room temperature, spin crossover molecules appear as the ideal candidate for implementing spin devices at the molecular level.
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characte rization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
We investigate the role of topology and distortions in the quantum dynamics of magnetic molecules, using a cyclic spin system as reference. We consider three variants of antiferromagnetic molecular ring, i.e. Cr$_8$, Cr$_7$Zn and Cr$_7$Ni, characteri zed by low lying states with different total spin $S$. We theoretically and experimentally study the low-temperature behavior of the magnetic torque as a function of the applied magnetic field. Near level crossings, this observable selectively probes quantum fluctuations of the total spin ($S$ mixing) induced by lowering of the ideal ring symmetry. We show that while a typical distortion of a model molecular structure is very ineffective in opening new $S$-mixing channels, the spin topology is a major ingredient to control the degree of $S$ mixing. This conclusion is further substantiated by low-temperature heat capacity measurements.
The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecules spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا