ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-dipolar magnetic field at the polar cap of neutron stars and the physics of pulsar radiation

119   0   0.0 ( 0 )
 نشر من قبل Andrzej Szary M.Sc.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrzej Szary




اسأل ChatGPT حول البحث

Despite the fact that pulsars have been observed for almost half a century, many questions have remained unanswered. We use the analysis of X-ray observations in order to study the polar cap region of radio pulsars. The size of the hot spots implies that the magnetic field configuration just above the stellar surface differs significantly from a purely dipole one. We can estimate the surface magnetic field as of the order of $10^{14},{rm G}$. On the other hand, the temperature of the hot spots is about a few million Kelvins. Based on these two facts the Partially Screened Gap (PSG) model was proposed to describe the Inner Acceleration Region (IAR). The PSG model assumes that the temperature of the actual polar cap is equal to the so-called critical value, i.e. the temperature at which the outflow of thermal ions from the surface screens the gap completely. We have found that, depending on the conditions above the polar cap, the generation of high energetic photons in IAR can be caused either by Curvature Radiation (CR) or by Inverse Compton Scattering (ICS). This results in two different scenarios of breaking the acceleration gap: the so-called PSG-off mode for CR-dominated gaps and the PSG-on mode ICS-dominated gaps. The existence of two different mechanisms of gap breakdown naturally explains the mode-changing and the pulse nulling. Furthermore, the mode changes of the IAR may explain the anti-correlation of radio and X-ray emission in very recent observations of PSR B0943+10 (Hermsen et al., 2013). Simultaneous analysis of X-ray and radio properties have allowed to develop a model which explains the drifting subpulse phenomenon. According to this model the drift takes place when the charge density in IAR differs from the Goldreich-Julian co-rotational density. The proposed model allows to verify both the radio drift parameters and X-ray efficiency of the observed pulsars.



قيم البحث

اقرأ أيضاً

Recent $gamma$-ray observations suggest that the particle acceleration occurs at the outer region of the pulsar magnetosphere. The magnetic field lines in the outer acceleration region (OAR) are connected to the neutron star surface (NSS). If copious electron--positron pairs are produced near the NSS, such pairs flow into the OAR and screen the electric field there. To activate the OAR, the electromagnetic cascade due to the electric field near the NSS should be suppressed. However, since a return current is expected along the field lines through the OAR, the outflow extracted from the NSS alone cannot screen the electric field just above the NSS. In this paper, we analytically and numerically study the electric-field screening at the NSS taking into account the effects of the back-flowing particles from the OAR. In certain limited cases, the electric field is screened without significant pair cascade if only ultrarelativistic particles ($gammagg1$) flow back to the NSS. On the other hand, if electron--positron pairs with a significant number density and mildly relativistic temperature, expected to distribute in a wide region of the magnetosphere, flow back to the NSS, these particles adjust the current and charge densities, so that the electric field can be screened without pair cascade. We obtain the condition for the number density of particles to screen the electric field at the NSS. We also find that in ion-extracted case from the NSS, bunches of particles are ejected to the outer region quasi-periodically, which is a possible mechanism of observed radio emission.
We propose a general method to self-consistently study the quasistationary evolution of the magnetic field in the cores of neutron stars. The traditional approach to this problem is critically revised. Our results are illustrated by calculation of th e typical timescales for the magnetic field dissipation as functions of temperature and the magnetic field strength.
338 - Hajime Inoue 2019
Structures of X-ray emitting magnetic polar regions on neutron stars in X-ray pulsars are studied in a range of the accretion rate, 10$^{17}$ g s$^{-1} sim 10^{18}$ g s$^{-1}$. It is shown that a thin but tall, radiation energy dominated, X-ray emitt ing polar cone appears at each of the polar regions. The height of the polar cone is several times as large as the neutron star radius. The energy gain due to the gravity of the neutron star in the polar cone exceeds the energy loss due to photon diffusion in the azimuthal direction of the cone, and a significant amount of energy is advected to the neutron star surface. Then, the radiation energy carried with the flow should become so large for the radiation pressure to overcome the magnetic pressure at the bottom of the cone. As a result, the matter should expand in the tangential direction along the neutron star surface, dragging the magnetic lines of force, and form a mound-like structure. The advected energy to the bottom of the cone should finally be radiated away from the surface of the polar mound and the matter should be settled on the neutron star surface there. From such configurations, we can expect an X-ray spectrum composed of a multi-color blackbody spectrum from the polar cone region and a quasi-single blackbody spectrum from the polar mound region. These spectral properties agree with observations. A combination of a fairly sharp pencil beam and a broad fan beam is expected from the polar cone region, while a broad pencil beam is expected from the polar mound region. With these X-ray beam properties, basic patterns of pulse profiles of X-ray pulsars can be explained too.
The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of t he crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $rho$, $rpropto rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $Bpropto rho^{1/2}$, and reaches the value of about $10^{17}$ Gauss in the core. It destroys super conducting vortices in the core of a star in the narrow region of the size of the order of ten centimeters. Because of generated density gradient of vortices they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, $B=B_0(1+t/tau)^{-1}$. The characteristic time of decreasing of the magnetic field $tau$ is equal to $tausimeq 10^3$ years. Thus, the magnetic field of accreted neutron stars decreases to values of $10^8 - 10^9$ Gauss during $10^7-10^6$ years.
The Green Bank North Celestial Cap (GBNCC) survey is a 350-MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars ( MSPs) and 24 rotating radio transients(RRATs). Several exotic pulsars have been discovered in the survey, including PSR J1759+5036, a binary pulsar with a 176-ms spin period in an orbit with a period of 2.04 days, an eccentricity of 0.3,and a projected semi-major axis of 6.8 light seconds. Using seven years of timing data, we are able to measure one post-Keplerian parameter, advance of periastron, which has allowed us to constrain the total system mass to 2.62(3) solar masses. This constraint, along with the spin period and orbital parameters, suggests that this is a double neutron star system, although we cannot entirely rule out a pulsar-white dwarf binary. This pulsar is only detectable in roughly 45% of observations, most likely due to scintillation. However, additional observations are required to determine whether there may be other contributing effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا