ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting imaginary quadratic points via universal torsors, II

153   0   0.0 ( 0 )
 نشر من قبل Ulrich Derenthal
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Manins conjecture for four singular quartic del Pezzo surfaces over imaginary quadratic number fields, using the universal torsor method.



قيم البحث

اقرأ أيضاً

Let $K/k$ be an extension of number fields, and let $P(t)$ be a quadratic polynomial over $k$. Let $X$ be the affine variety defined by $P(t) = N_{K/k}(mathbf{z})$. We study the Hasse principle and weak approximation for $X$ in three cases. For $[K:k ]=4$ and $P(t)$ irreducible over $k$ and split in $K$, we prove the Hasse principle and weak approximation. For $k=mathbb{Q}$ with arbitrary $K$, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one. For $[K:k]=4$ and $P(t)$ irreducible over $k$, we determine the Brauer group of smooth proper models of $X$. In a case where it is non-trivial, we exhibit a counterexample to weak approximation.
A positive definite even Hermitian lattice is called emph{even universal} if it represents all even positive integers. We introduce a method to get all even universal binary Hermitian lattices over imaginary quadratic fields $Q{-m}$ for all positive square-free integers $m$ and we list optimal criterions on even universality of Hermitian lattices over $Q{-m}$ which admits even universal binary Hermitian lattices.
We prove that a smooth complete intersection of two quadrics of dimension at least $2$ over a number field has index dividing $2$, i.e., that it possesses a rational $0$-cycle of degree $2$.
We will introduce a method to get all universal Hermitian lattices over imaginary quadratic fields over $mathbb{Q}(sqrt{-m})$ for all m. For each imaginary quadratic field $mathbb{Q}(sqrt{-m})$, we obtain a criterion on universality of Hermitian latt ices: if a Hermitian lattice L represents 1, 2, 3, 5, 6, 7, 10, 13,14 and 15, then L is universal. We call this the fifteen theorem for universal Hermitian lattices. Note that the difference between Conway-Schneebergers fifteen theorem and ours is the number 13.
We describe the practical implementation of an average polynomial-time algorithm for counting points on superelliptic curves defined over $mathbb Q$ that is substantially faster than previous approaches. Our algorithm takes as input a superelliptic c urves $y^m=f(x)$ with $mge 2$ and $fin mathbb Z[x]$ any squarefree polynomial of degree $dge 3$, along with a positive integer $N$. It can compute $#X(mathbb F_p)$ for all $ple N$ not dividing $mmathrm{lc}(f)mathrm{disc}(f)$ in time $O(md^3 Nlog^3 Nloglog N)$. It achieves this by computing the trace of the Cartier--Manin matrix of reductions of $X$. We can also compute the Cartier--Manin matrix itself, which determines the $p$-rank of the Jacobian of $X$ and the numerator of its zeta function modulo~$p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا