ﻻ يوجد ملخص باللغة العربية
We study geometric representation theory of Lie algebroids. A new equivalence relation for integrable Lie algebroids is introduced and investigated. It is shown that two equivalent Lie algebroids have equivalent categories of infinitesimal actions of Lie algebroids. As an application, it is also shown that the Hamiltonian categories for gauge equivalent Dirac structures are equivalent as categories.
We show a few basic results about moduli spaces of semistable modules over Lie algebroids. The first result shows that such moduli spaces exist for relative projective morphisms of noetherian schemes, removing some earlier constraints. The second res
We study Lie algebroids in positive characteristic and moduli spaces of their modules. In particular, we show a Langtons type theorem for the corresponding moduli spaces. We relate Langtons construction to Simpsons construction of gr-semistable Griff
We define involution algebroids which generalise Lie algebroids to the abstract setting of tangent categories. As a part of this generalisation the Jacobi identity which appears in classical Lie theory is replaced by an identity similar to the Yang-B
Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.
This thesis deals with deformations of VB-algebroids and VB-groupoids. They can be considered as vector bundles in the categories of Lie algebroids and groupoids and encompass several classical objects, including Lie algebra and Lie group representat