ترغب بنشر مسار تعليمي؟ اضغط هنا

Techniques for Measuring Aerosol Attenuation using the Central Laser Facility at the Pierre Auger Observatory

104   0   0.0 ( 0 )
 نشر من قبل Laura Valore
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.



قيم البحث

اقرأ أيضاً

155 - Laura Valore 2014
The Fluorescence Detector (FD) of the Pierre Auger Observatory provides a nearly calorimetric measurement of the primary particle energy, since the fluorescence light produced is proportional to the energy dissipated by an Extensive Air Shower (EAS) in the atmosphere. The atmosphere therefore acts as a giant calorimeter, whose properties need to be well known during data taking. Aerosols play a key role in this scenario, since their effect on light transmission is highly variable even on a time scale of one hour, and the corresponding correction to EAS energy can range from a few percent to more than 40%. For this reason, hourly Vertical Aerosol Optical Depth (taer(h)) profiles are provided for each of the four FD stations. Starting from 2004, up to now 9 years of taer(h) profiles have been produced using data from the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) of the Pierre Auger Observatory. The two laser facilities, the techniques developed to measure taer(h) profiles using laser data and the results will be discussed.
94 - Laura Valore 2019
The atmospheric aerosol monitoring system of the Pierre Auger Observatory has been operating smoothly since 2004. Two laser facilities (Central Laser Facility, CLF and eXtreme Laser Facility, XLF) fire sets of 50 shots four times per hour during FD s hifts to measure the highly variable hourly aerosol attenuation to correct the longitudinal UV light profiles of the Extensive Air Showers detected by the Fluorescence Detector. Hourly aerosol attenuation loads (Vertical Aerosol Optical Depth) are used to correct the measured profiles. Two techniques are used to determine the aerosol profiles, which have been proven to be fully compatible. The uncertainty in the VAOD profiles measured consequently leads to an uncertainty on the energy and on the estimation of the depth at the maximum development of a shower (X max ) of the event in analysis. To prove the validity of the aerosol attenuation measurements used in FD event analysis, the flatness of the ratio of reconstructed SD to FD energy as a function of the aerosol transmission to the depth of shower maximum has been verified.
The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Au ger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a test beam to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.
The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the worlds largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to stu dy the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا