ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole spin-down by truncated disc emission

101   0   0.0 ( 0 )
 نشر من قبل Pavel Abolmasov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pavel Abolmasov




اسأل ChatGPT حول البحث

The influence of disc radiation capture upon black hole rotational evolution is negligible for radiatively inefficient discs. For the standard thin disc model it is a slight but potentially important effect leading to the equilibrium spin parameter value of about 0.998. For optically thin discs, the fraction of disc radiation captured by the black hole is however about two times larger. In some disc radiation models, inner parts of the accretion flow are optically thin, advection-dominated flows, and the thin disc ends at some transition radius R_{tr}. The thermal energy of the disc stored in trapped radiation is released at this radius. Angular distribution of the radiation released at this radial photosphere facilitates its capture by the black hole. For accretion rates close to critical and disc truncation radius of (2..4) GM/c^2, radiation capture is most efficient in spinning the black hole down that may lead to a_{eq} ~ 0.996..0.997 or less depending on the mass accretion rate. For an accretion flow radiating some constant fraction epsilon of dissipated energy, the equilibrium Kerr parameter is shown to obey the relation 1-a_{eq} propto epsilon^{3/2} as long as 1-a_{eq} << 1. Deviations from Keplerian law near the last stable orbit dominate over the radiation capture effect if they exceed 1..2%.



قيم البحث

اقرأ أيضاً

X-ray flux from the inner hot region around central compact object in a binary system illuminates the upper surface of an accretion disc and it behaves like a corona. This region can be photoionised by the illuminating radiation, thus can emit differ ent emission lines. We study those line spectra in black hole X-ray binaries for different accretion flow parameters including its geometry. The varying range of model parameters captures maximum possible observational features. We also put light on the routinely observed Fe line emission properties based on different model parameters, ionization rate, and Fe abundances. We find that the Fe line equivalent width $W_{rm E}$ decreases with increasing disc accretion rate and increases with the column density of the illuminated gas. Our estimated line properties are in agreement with observational signatures.
A super-massive black hole (SMBH) binary in the core of the blazar OJ 287 has been invoked in previous works to explain its observed optical flare quasi-periodicity. Following this picture, we investigate a hadronic origin for the X-ray and $gamma$-r ay counterparts of the November 2015 major optical flare of this source. An impact outflow must result after the lighter SMBH (the secondary) crosses the accretion disc of the heavier one (the primary). We then consider acceleration of cosmic-ray (CR) protons in the shock driven by the impact outflow as it expands and collides with the active galactic nucleus (AGN) wind of the primary SMBH. We show that the emission of these CRs can reproduce the X-ray and $gamma$-ray flare data self-consistently with the optical component of the November 2015 major flare. The derived emission models are consistent with a magnetic field $B sim 5$ G in the emission region and a power-law index of $qsim2.2$ for the energy distribution of the emitting CRs. The mechanical luminosity of the AGN wind represents $lesssim 50%$ of the mass accretion power of the primary SMBH in all the derived emission profiles.
(Abridged) We complete the census of nuclear X-ray activity in 100 early type Virgo galaxies observed by the Chandra X-ray Telescope as part of the AMUSE-Virgo survey, down to a (3sigma) limiting luminosity of 3.7E+38 erg/s over 0.5-7 keV. The stella r mass distribution of the targeted sample, which is mostly composed of formally `inactive galaxies, peaks below 1E+10 M_Sun, a regime where the very existence of nuclear super-massive black holes (SMBHs) is debated. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low-mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active SMBH (at the 95% C.L.). This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction -down to our luminosity limit- is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass as M_BH^(-0.62^{+0.13}_{-0.12}), with an intrinsic scatter of 0.46^({+0.08}_{-0.06}) dex. This finding can be interpreted as observational evidence for `down-sizing of black hole accretion in local early types, that is, low mass black holes shine relatively closer to their Eddington limit than higher mass objects. As a consequence, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing black hole mass.
We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasmas kinetic energy and holes rotational energy can convert to radiative energy. In this letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; the look would be like an aurora. The high energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.
We show that disc continuum fitting can be used to constrain black hole spin in a subclass of Narrow Line Seyfert 1 (NLS1) AGN as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper limit of $a_*<0.86$. This contrasts with the recent X-ray determinations of (close to) maximal black hole spin in other NLS1 based on relativistic smearing of the iron profile. While our data on PG1244+026 does not have sufficient statistics at high energy to give a good measure of black hole spin from the iron line profile, cosmological simulations predict that black holes with similar masses have similar growth histories and so should have similar spins. This suggests that there is a problem either in our understanding of disc spectra, or/and X-ray reflection or/and the evolution of black hole spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا