ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-LAT study of two gamma-ray binaries, HESS J0632+057 and AGL J2241+4454

113   0   0.0 ( 0 )
 نشر من قبل Masaki Mori
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masaki Mori




اسأل ChatGPT حول البحث

GeV gamma-ray emission from two gamma-ray binary candidates, HESS J0632+057 and AGL J2241+4454, which were recently reported by H.E.S.S. and AGILE, respectively, have been searched for using the Fermi-LAT archival dataset. Spatial and temporal distribution of gamma-ray events are studied, but there was no evidence for GeV gamma-ray signal from either sources.



قيم البحث

اقرأ أيضاً

The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a gamma-ray binary, a subclass of the high mass X-ray binary (HMXB) population, through the detection of an orbital period of 321 days. We performed a deep sear ch for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright gamma-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated a Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5 deg circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1-100 GeV energy range integrating over ~3.5 years of data; with a 95% flux upper limit of F_{0.1-100 GeV} < 3 x 10-8 ph cm-2 s-1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter timescales (days--months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope (GBT). No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 mu Jy at 2/9 GHz. The LAT flux upper limits combined with the detection of HESS J0632+057 in the 136-400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the gamma-ray emission.
We study changes in the $gamma$--ray intensity at very high energies observed from the $gamma$--ray binary HESS J0632+057. Publicly available data collected by Cherenkov telescopes were examined by means of a simple method utilizing solely the number of source and background events. Our results point to time variability in signal from the selected object consistent with periodic modulation of the source intensity.
The variable gamma-ray source HESS J0632+057 is an excellent candidate for a gamma-ray binary. The putative binary system was discovered as a point-like VHE gamma-ray source by HESS. Later measurements by VERITAS yielding no detection, provided evide nce for variable emission in the gamma-ray domain. A variable X-ray source as well as a Be star (MWC 148) are found at the location of the gamma-ray source. Recently a periodic X-ray outburst occurring about every 320 days was reported by Swift (ATel 3152). The putative binary system was observed by the MAGIC stereo system in 2010 and 2011. Our measurements demonstrate significant activity in the gamma-ray (E > 200 GeV) band in February 2011. Our detection of the system occurred during an X-ray outburst reported by Swift. Here we present the obtained light curve and spectrum during this outburst and put them into context with the X-ray measurements.
153 - J. A. Hinton 2008
The High Energy Stereoscopic System (HESS) survey of the Galactic plane has established the existence of a substantial number (~40) of Galactic TeV gamma-ray sources, a large fraction of which remain unidentified. HESS J0632+057 is one of a small fra ction of these objects which is point-like in nature(<2 rms), and is one of only two point-like sources that remain unidentified. Follow-up observations of this object with XMM-Newton have revealed an X-ray source coincident with the TeV source and with the massive star MWC 148, of the spectral type B0pe. This source exhibits a hard spectrum, consistent with an absorbed power law with Gamma = 1.26 +/- 0.04, and shows significant variability on hour timescales. We discuss this spatial coincidence and the implied spectral energy distribution of this object and argue that it is likely a new gamma-ray binary system with a close resemblance to the three known members of this class, and in particular to LS I +61 303. Further X-ray, radio and optical observations of this system are needed to firmly establish HESS J0632+057 as a new member of this rare class of Galactic objects.
HESS J0632+057 is a gamma-ray binary composed of a compact object and a Be star, with an orbital period of about 315 days. The actual nature of its non-thermal emission, spanning from radio to very-high-energy (VHE, >100 GeV) gamma-rays, is currently unknown. In this contribution we will present the results of a set of simultaneous observations performed by the NuSTAR X-ray telescope and the VERITAS observatory. The combination of hard X-rays (3-30 keV) and VHE gamma-rays (0.1-5 TeV) provide valuable information for the understanding of the radiative processes occurring in the system. The spectral energy distributions (SED) derived from the observations are used to probe the pulsar scenario, in which the system is powered by a rapidly rotating neutron star. The non-thermal emission is produced by the particles accelerated at the shock formed by the collision of the pulsar and stellar winds. As a results of the model fitting, we constrain the relation between the pulsar spin-down luminosity and the magnetization of the pulsar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا