ﻻ يوجد ملخص باللغة العربية
We derive consistency relations for correlators of scalar cosmological perturbations which hold in the squeezed limit in which one or more of the external momenta become soft. Our results are formulated as relations between suitably defined one-particle irreducible N-point and (N-1)-point functions that follow from residual spatial conformal diffeomorphisms of the unitary gauge Lagrangian. As such, some of these relations are exact to all orders in perturbation theory, and do not rely on approximate deSitter invariance or other dynamical assumptions (e.g., properties of the operator product expansion or the behavior of modes at horizon crossing). The consistency relations apply model-independently to cosmological scenarios where the time evolution is driven by a single scalar field. Besides reproducing the known results for single-field inflation in the slow roll limit, we verify that our consistency relations hold more generally, for instance in ghost condensate models in flat space. We comment on possible extensions of our results to multi-field models.
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected
We investigate cosmological perturbations of scalar-tensor theories in Palatini formalism. First we introduce an action where the Ricci scalar is conformally coupled to a function of a scalar field and its kinetic term and there is also a k-essence t
We calculate the entanglement entropy of scalar perturbations due to gravitational non-linearities present in any model of canonically-coupled, single-field ekpyrosis. Specifically, we focus on a recent model of improved ekpyrosis which is able to ge
The space of inflationary models is vast, containing wide varieties of mechanisms, symmetries, and spectra of particles. Consequently, the space of observational signatures is similarly complex. Hence, it is natural to look for boundaries of the spac
The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are