ترغب بنشر مسار تعليمي؟ اضغط هنا

DASCH 100-yr light curves of high-mass X-ray binaries

176   0   0.0 ( 0 )
 نشر من قبل Mathieu Servillat
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the 100-yr light curves of Galactic high-mass X-ray binaries using the Harvard photographic plate collection, made accessible through the DASCH project (Digital Access to a Sky Century at Harvard). As scanning is still in progress, we focus on the four objects that are currently well covered: the supergiant X-ray binary Cyg X-1 (V1357 Cyg), and the Be X-ray binaries 1H 1936+541 (BD+53 2262), RX J1744.7-2713 (HD 161103), and RX J2030.5+4751 (SAO 49725), the latter two objects being similar to gamma Cas. The star associated with Cyg X-1 does not show evidence for variability with an amplitude higher than 0.3 magnitude over a hundred years. We found significant variability of one magnitude with timescales of more than 10 years for SAO 49725, as well as a possible period of 500-600 days and an amplitude of 0.05 magnitude that might be the orbital, or super-orbital period of the system. The data is insufficient to conclude for HD 161103 but suggests a similar long-term variability. We thus observe an additional characteristic of gamma Cas-like objects: their long-term variability. This variability seems to be due to the slow evolution of a decretion disk around the Be star, but may be triggered by the presence of a compact object in the system, possibly a white dwarf. This characteristic could be used to identify further similar objects otherwise difficult to detect.



قيم البحث

اقرأ أيضاً

High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra nsient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
132 - P. Reig 2014
We present photometric observations of the field around the optical counterparts of high-mass X-ray binaries. Our aim is to study the long-term photometric variability in correlation with their X-ray activity and derive a set of secondary standard st ars that can be used for time series analysis. We find that the donors in Be/X-ray binaries exhibit larger amplitude changes in the magnitudes and colours than those hosting a supergiant companion. The amplitude of variability increases with wavelength in Be/X-ray binaries and remains fairly constant in supergiant systems. When time scales of years are considered, a good correlation between the X-ray and optical variability is observed. The X-rays cease when optical brightness decreases. These results reflect the fact that the circumstellar disk in Be/X-ray binaries is the main source of both optical and X-ray variability. We also derive the colour excess, E(B-V), selecting data at times when the contribution of the circumstellar disk was supposed to be at minimum, and we revisit the distance estimates.
The X-ray light-curves of the recurring outbursts observed in low-mass X-ray binaries provide strong test beds for constraining (still) poorly understood disc-accretion processes. These light-curves act as a powerful diagnostic to probe the physics b ehind the mechanisms driving mass inflow and outflow in these binary systems. We have thus developed an innovative methodology, combining a foundation of Bayesian statistics, observed X-ray light-curves, and accretion disc theory. With this methodology, we characterize the angular-momentum (and mass) transport processes in an accretion disc, as well as the properties of the X-ray irradiation-heating that regulates the decay from outburst maximum in low-mass X-ray transients. We recently applied our methodology to the Galactic black-hole low-mass X-ray binary population, deriving from their lightcurves the first-ever quantitative measurements of the $alpha$-viscosity parameter in these systems citep{tetarenko2018}. In this paper, we continue the study of these binaries, using Bayesian methods to investigate the X-ray irradiation of their discs during outbursts of strong accretion. We find that the predictions of the disc-instability model, assuming a source of X-ray irradiation proportional to the central accretion rate throughout outburst, do not adequately describe the later stages of BH-LMXB outburst light-curves. We postulate that the complex and varied light-curve morphology observed across the population is evidence for irradiation that varies in time and space within the disc, throughout individual transient outbursts. Lastly, we demonstrate the robustness of our methodology, by accurately reproducing the synthetic model light-curves computed from numerical codes built to simulate accretion flows in binary systems.
233 - Wynn C. G. Ho 2020
The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where t he neutron star is in its late propeller, accretor, or nearly spin equilibrium phase. Here we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries early in their life. We show that a young neutron star is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ~4000 yr old high-mass X-ray binary XMMU J051342.6-672412 and find that the systems neutron star, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > (a few)x10^13 G, which is comparable to the magnetic field of many older high-mass X-ray binaries and is much higher than the spin equilibrium inferred value of (a few)x10^11 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic neutron star or a small amount of accretion that can occur in the propeller phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا