ﻻ يوجد ملخص باللغة العربية
A generalized eigenvalue algorithm for tridiagonal matrix pencils is presented. The algorithm appears as the time evolution equation of a nonautonomous discrete integrable system associated with a polynomial sequence which has some orthogonality on the support set of the zeros of the characteristic polynomial for a tridiagonal matrix pencil. The convergence of the algorithm is discussed by using the solution to the initial value problem for the corresponding discrete integrable system.
We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an $Ntimes N$ str
In this paper, a parallel structured divide-and-conquer (PSDC) eigensolver is proposed for symmetric tridiagonal matrices based on ScaLAPACK and a parallel structured matrix multiplication algorithm, called PSMMA. Computing the eigenvectors via matri
We contribute to the algebraic-geometric study of discrete integrable systems generated by planar birational maps: (a) we find geometric description of Manin involutions for elliptic pencils consisting of curves of higher degree, birationally equiv
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization, $ell_1$ norm regularized optimization, and $ell_0$ norm regularized optimization as spe
We constructed involutions for a Halphen pencil of index 2, and proved that the birational mapping corresponding to the autonomous reduction of the elliptic Painleve equation for the same pencil can be obtained as the composition of two such involutions.