ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bimodal Metallicity Distribution of the Cool Circumgalactic Medium at z<1

120   0   0.0 ( 0 )
 نشر من قبل Nicolas Lehner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the metal content of the cool (10^4 K) circumgalactic medium (CGM) about galaxies at z<1 using an H I-selected sample of 28 Lyman limit systems (LLS, defined here as absorbers with 16.2<log N(H I)<18.5) observed in absorption against background QSOs by the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. The N(H I) selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N(H I) in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H]=-1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously-undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z<1 galaxies.



قيم البحث

اقرأ أيضاً

The standard model of cosmology, the LCDM model, robustly predicts the existence of a multitude of dark matter subhaloes around galaxies like the Milky Way. A wide variety of observations have been proposed to look for the gravitational effects such subhaloes would induce in observable matter. Most of these approaches pertain to the stellar or cool gaseous phases of matter. Here we propose a new approach, which is to search for the perturbations that such dark subhaloes would source in the warm/hot circumgalactic medium (CGM) around normal galaxies. With a combination of analytic theory, carefully-controlled high-resolution idealised simulations, and full cosmological hydrodynamical simulations (the ARTEMIS simulations), we calculate the expected signal and how it depends on important physical parameters (subhalo mass, CGM temperature, and relative velocity). We find that dark subhaloes enhance both the local CGM temperature and density and, therefore, also the pressure. For the pressure and density, the fluctuations can vary in magnitude from tens of percent (for subhaloes with M_sub=10^10 Msun) to a few percent (for subhaloes with M_sub=10^8 Msun), although this depends strongly on the CGM temperature. The subhaloes also induce fluctuations in the velocity field ranging in magnitude from a few km/s up to 25 km/s. We propose that X-ray, Sunyaev-Zeldovich effect, radio dispersion measure, and quasar absorption line observations can be used to measure these fluctuations and place constraints on the abundance and distribution of dark subhaloes, thereby placing constraints on the nature of dark matter.
We present spatially-resolved echelle spectroscopy of an intervening MgII-FeII-MgI absorption-line system detected at $z_{rm abs}=0.73379$ toward the giant gravitational arc PSZ1 G311.65-18.48. The absorbing gas is associated to an inclined disk-like star-forming galaxy, whose major axis is aligned with the two arc-segments reported here. We probe in absorption the galaxys extended disk continuously, at $approx 3$ kpc sampling, from its inner region out to $15times$ the optical radius. We detect strong ($W_0^{2796}>0.3$ r{A}) coherent absorption along $13$ independent positions at impact parameters $D=0$--$29$ kpc on one side of the galaxy, and no absorption at $D=28$--$57$ kpc on the opposite side (all de-lensed distances at $z_{rm abs}$). We show that: (1) the gas distribution is anisotropic; (2) $W_0^{2796}$, $W_0^{2600}$, $W_0^{2852}$, and the ratio $W_0^{2600}!/W_0^{2796}$, all anti-correlate with $D$; (3) the $W_0^{2796}$-$D$ relation is not cuspy and exhibits significantly less scatter than the quasar-absorber statistics; (4) the absorbing gas is co-rotating with the galaxy out to $D lesssim 20$ kpc, resembling a `flat rotation curve, but at $Dgtrsim 20$ kpc velocities decline below the expectations from a 3D disk-model extrapolated from the nebular [OII] emission. These signatures constitute unambiguous evidence for rotating extra-planar diffuse gas, possibly also undergoing enriched accretion at its edge. Arguably, we are witnessing some of the long-sought processes of the baryon cycle in a single distant galaxy expected to be representative of such phenomena.
We present an analysis of the metallicity distribution of the dense circumgalactic medium (CGM) of galaxies at 0.1 < z < 1.1 as probed by partial Lyman limit systems (pLLSs, 16.1 < log N(H I) < 17.2) and LLSs (17.2 < log N(H I) < 17.7 in our sample). The new H I-selected sample, drawn from our HST COS G140L snapshot survey of 61 QSOs, has 20 pLLSs and 10 LLSs. Combined with our previous survey, we have a total of 44 pLLSs and 11 LLSs. We find that the metallicity distribution of the pLLSs is bimodal at z < 1, with a minimum at [X/H] = -1. The low-metallicity peak comprises (57 +/- 8)% of the pLLSs and is centered at [X/H] ~ -1.87 (1.3% solar metallicity), while the high-metallicity peak is centered at [X/H] ~ -0.32 (48% solar metallicity). Although the sample of LLSs is still small, there is some evidence that the metallicity distributions of the LLSs and pLLSs are different, with a far lower fraction of very metal-poor ([X/H] < -1.4) LLSs than pLLSs. The fraction of LLSs with [X/H] < -1 is similar to that found in pLLSs (~56%). However, higher H I column density absorbers (log N(H I) > 19.0) show a much lower fraction of metal-poor gas; therefore, the metallicity distribution of gas in and around galaxies depends sensitively on N(H I) at z < 1. We interpret the high-metallicity ([X/H] > -1) pLLSs and LLSs as arising in outflows, recycling winds, and tidally-stripped gas around galaxies. The low-metallicity pLLSs and LLSs imply that the CGM of z < 1 galaxies is also host to a substantial mass of cool, dense, low-metallicity gas that may ultimately accrete onto the galaxies.
91 - Greg Stinson 2011
We explore the circumgalactic medium (CGM) of two simulated star-forming galaxies with luminosities L ~ 0.1 and 1 L* generated using the smooth particle hydrodynamic code GASOLINE. These simulations are part of the Making Galaxies In a Cosmological C ontext (MAGICC) program in which the stellar feedback is tuned to match the stellar mass-halo mass relationship. For comparison, each galaxy was also simulated using a lower feedback (LF) model which has strength comparable to other implementations in the literature. The MAGICC feedback (MF) model has a higher incidence of massive stars and an approximately two times higher energy input per supernova. Apart from the low-mass halo using LF, each galaxy exhibits a metal-enriched CGM that extends to approximately the virial radius. A significant fraction of this gas has been heated in supernova explosions in the disc and subsequently ejected into the CGM where it is predicted to give rise to substantial O VI absorption. The simulations do not yet address the question of what happens to the O VI when the galaxies stop forming stars. Our models also predict a reservoir of cool H I clouds that show strong Lyalpha absorption to several hundred kpc. Comparing these models to recent surveys with the Hubble Space Telescope, we find that only the MF models have sufficient O VI and H I gas in the CGM to reproduce the observed distributions. In separate analyses, these same MF models also show better agreement with other galaxy observables (e.g. rotation curves, surface brightness profiles and H I gas distribution). We infer that the CGM is the dominant reservoir of baryons for galaxy haloes.
The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on HST it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Halpha emission for a sample of 54 strongly star-forming galaxies at z~1 in the 3D-HST Treasury survey. By stacking the Halpha emission we find that star formation occurred in approximately exponential distributions at z~1, with median Sersic index of n=1.0+-0.2. The stacks are elongated with median axis ratios of b/a=0.58+-0.09 in Halpha, consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination-corrected velocities of 90 to 330 km/s. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z~1 generally occurred in disks. The disks appear to be scaled-up
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا