ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysing the Transverse Structure of the Relativistic Jets of AGN

116   0   0.0 ( 0 )
 نشر من قبل Eoin Murphy Mr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a method of fitting total intensity and polarization profiles in VLBI images of astrophysical jets to profiles predicted by a theoretical model. As an example, the method is used to fit profiles of the jet in the Active Galactic Nucleus Mrk501 with profiles predicted by a model in which a cylindrical jet of synchrotron plasma is threaded by a magnetic field with helical and disordered components. This fitting yields model Stokes Q profiles that agree with the observed profiles to within the 1-2 sigma uncertainties; the I model and observed profiles are overall not in such good agreement, with the model I profiles being generally more symmetrical than the observed profiles. Consistent fitting results are obtained for profiles derived from 6cm VLBI images at two distances from the core, and also for profiles obtained for different wavelengths at a single location in the VLBI jet. The most striking success of the model is its ability to reproduce the spine-sheath polarization structure observed across the jet. Using the derived viewing angle in the jet rest frame, delta approximately 83 degrees, together with a superluminal speed reported in the literature, beta apparent = 3.3, yields a solution for the viewing angle and velocity of the jet in the observers frame delta degrees and beta approximately 0.96. Although these results for Mrk501 must be considered tentative, the combined analysis of polarization profiles and apparent component speeds holds promise as a means of further elucidating the magnetic field structures and other parameters of parsec-scale AGN jets.



قيم البحث

اقرأ أيضاً

158 - O. Hervet , Z. Meliani , A. Zech 2017
The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.
In this paper, we investigate the acceleration in relativistic jets of high-energy proton preaccelerated in the magnetosphere of a supermassive black hole. The proton reaches maximum energy when passing the total potential difference of $U$ between t he jet axis and its periphery. This voltage is created by a rotating black hole and transmitted along magnetic field lines into the jet. It is shown that the trajectories of proton in the jet are divided into three groups: untrapped, trapped and not accelerated. Untrapped particles are not kept by poloidal and toroidal magnetic fields inside the jet, so they escape out the jet and their energy is equal to the maximum value, $eU$. Trapped protons are moving along the jet with oscillations in the radial direction. Their energy varies around the value of $0.74 eU$. In a strong magnetic field protons preaccelerated in the magnetosphere are pressed to the jet axis and practically are not accelerated in the jet. The work defines acceleration regimes for a range of the most well-known AGN objects with relativistic jets and for the microquasar SS433.
Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
(Abridged) We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron--positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor $Gamma$. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. We conclude that large-scale magnetic fields can explain the salient polarization properties of parsec-scale AGN jets. Since the typical degrees of polarization are $leq 15%$, the emitting parts of the jets must have comparable rest-frame toroidal and poloidal fields. In this case, most relativistic jets are strongly dominated by the toroidal magnetic field component in the observers frame, $B_phi/B_z sim Gamma$. We also discuss the possibility that relativistic AGN jets may be electromagnetically (Poynting flux) dominated. In this case, dissipation of the toroidal magnetic field (and not fluid shocks) may be responsible for particle acceleration.
There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reaso ns for these differences (whether wrong hypotheses or intrinsic source variability), and if it is possible to converge to a reliable measurement of this physical quantity. We present preliminary results of a project aimed at calibrating the power of relativistic jets in active galactic nuclei (AGN) and X-ray binaries (XRB). We started by selecting all the AGN associations with known redshift in the Fourth Fermi LAT Gamma-Ray Catalog (4FGL). We then calculated the radiative and/or kinetic powers from available data or we extracted this information from literature. We compare the values obtained for overlapping samples and highlight early conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا