ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

84   0   0.0 ( 0 )
 نشر من قبل Daniel Bemmerer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy and for comparison also using an americium-beryllium neutron source.



قيم البحث

اقرأ أيضاً

99 - F.Hammache , M.Heil , S.Typel 2010
The recently claimed observations of non-negligible amounts of 6Li in old halo stars have renewed interest in the Big-Bang Nucleosynthesis (BBN) of 6Li. One important ingredient in the predicted BBN abundance of 6Li is the low-energy 2H(alpha,gamma)6 Li cross section. Up to now, the only available experimental result for this cross section showed an almost constant astrophysical S-factor below 400 keV, contrary to theoretical expectations. We report on a new measurement of the 2H(alpha,gamma)6Li reaction using the break-up of 6Li at 150 A MeV. Even though we cannot separate experimentally the Coulomb contribution from the nuclear one, we find clear evidence for Coulomb-nuclear interference by analyzing the scattering-angular distributions. This is in-line with our theoretical description which indicates a drop of the S_24-factor at low energies as predicted also by most other models. Consequently, we find even lower upper limits for the calculated primordial 6Li abundance than before.
The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128 Ba(g,a)124Xe was found to affect the abundance of the p nucleus 124Xe. Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(a,g)128Ba reaction and to compare the results with statistical model predictions. Of great importance is the fact that data below the (a,n) threshold was obtained. Studying simultaneously the 124Xe(a,n)127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. The 124Xe + alpha cross sections were measured with the activation method using a thin window 124Xe gas cell. The studied energy range was between E = 11 and 15 MeV close above the astrophysically relevant energy range. The obtained cross sections are compared with statistical model calculations. The experimental cross sections are smaller than standard predictions previously used in astrophysical calculations. As dominating source of the difference, the theoretical alpha width was identified. The experimental data suggest an alpha width lower by at least a factor of 0.125 in the astrophysical energy range. An upper limit for the 128Ba(g,a)124Xe stellar rate was inferred from our measurement. The impact of this rate was studied in two different models for core-collapse supernova explosions of 25 solar mass stars. A significant contribution to the 124Xe abundance via this reaction path would only be possible when the rate was increased above the previous standard value. Since the experimental data rule this out, they also demonstrate the closure of this production path.
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.
122 - G. G. Kiss , T. Szucs , T.Rauscher 2014
The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically relevant region (which lies between 7.8 and 11.48 MeV at 3 GK stellar temperature). The 162Er(a,n)165Yb reaction was studied above the reaction threshold between Ec.m. = 12.19 and 16.09 MeV. The fact that the 162Er(a,g)166Yb cross sections were measured below the (a,n) threshold at first time in this mass region opens the opportunity to study directly the a-widths required for the determination of astrophysical reaction rates. The data clearly show that compound nucleus formation in this reaction proceeds differently than previously predicted.
The cross sections of 110 radioactive nuclide with mass numbers 22 < A < 198 amu from the interaction of 2.2 GeV/nucleon deuterons from the Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna with a 197Au target are investigated using induced activity method. The results including charge and mass distributions are parameterized in terms of 3-parameter equation in order to complete the real isobaric distribution. Using data from charge distribution total mass-yield distribution was obtained. The analysis of the mass-yield distribution allows to suppose existence of different channels of the interaction such as spallation, deep spallation, fission-like and multifragmentation processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا