ﻻ يوجد ملخص باللغة العربية
We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincar{e} theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. [1] H. Cendra et. al., Journal of Mathematical Physics 39, 3138 (1998)
Motivated by recent discussions on the possible role of quantum computation in plasma simulations, here we present different approaches to Koopmans Hilbert-space formulation of classical mechanics in the context of Vlasov-Maxwell kinetic theory. The
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general re
We consider linear stability of steady states of 1(1/2) and 3D Vlasov-Maxwell systems for collisionless plasmas. The linearized systems can be written as separable Hamiltonian systems with constraints. By using a general theory for separable Hamilton
We consider the Vlasov-Maxwell equations with one spatial direction and two momenta, one in the longitudinal direction and one in the transverse direction. By solving the Jacobi identity, we derive reduced Hamiltonian fluid models for the density, th
There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the L