ﻻ يوجد ملخص باللغة العربية
We present spectroscopic observations with VLT/XSHOOTER and Subaru/MOIRCS of a relatively bright Y-band drop-out galaxy in the Hubble Ultra Deep Field, first selected by Bunker et al. (2010), McLure et al. (2010) and Bouwens et al. (2010) to be a likely z~8-9 galaxy on the basis of its colours in the HST ACS and WFC3 images. This galaxy, HUDF.YD3 (also known as UDFy-38135539) has been targetted for VLT/SINFONI integral field spectroscopy by Lehnert et al. (2010), who published a candidate Lyman-alpha emission line at z=8.55 from this source. In our independent spectroscopy using two different infrared spectrographs (5 hours with VLT/XSHOOTER and 11 hours with Subaru/MOIRCS) we are unable to reproduce this line. We do not detect any emission line at the spectral and spatial location reported in Lehnert et al. (2010), despite the expected signal in our combined MOIRCS & XSHOOTER data being 5-sigma. The line emission also seems to be ruled out by the faintness of this object in recently extremely deep F105W (Y-band) HST/WFC3 imaging from HUDF12; the line would fall within this filter and such a galaxy should have been detected at Y(AB)=28.6mag (~20 sigma) rather than the marginal Y(AB)~30mag observed in the Y-band image, >3 times fainter than would be expected if the emission lie was real. Hence it appears highly unlikely that the reported Lyman-alpha line emission at z>8 is real, meaning that the highest-redshift sources for which Lyman-alpha emission has been seen are at z=6.9-7.2. It is conceivable that Lyman-alpha does not escape galaxies at higher redshifts, where the Gunn-Peterson absorption renders the Universe optically thick to this line. However, deeper spectroscopy on a larger sample of candidate z>7 galaxies will be needed to test this.
We present Gemini/GNIRS spectroscopic observations of 4 z-band (z~7) dropout galaxies and VLT/XSHOOTER observations of one z-band dropout and 3 Y-band (z~8-9) dropout galaxies in the Hubble Ultra Deep Field, which were selected with Wide Field Camera
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging
We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of tar
We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lym
We have performed deep imaging surveys for LyA emitters (LAEs) at redshift ~7.3 in two blank fields, the Subaru Deep Field (SDF) and the Subaru/XMM-Newton Deep survey Field (SXDF), using the Subaru/Suprime-Cam equipped with new red-sensitive CCDs and