ﻻ يوجد ملخص باللغة العربية
Experimental data with digital masks and a theoretical analysis are presented for an imaging scheme that we call time-correspondence differential ghost imaging (TCDGI). It is shown that by conditional averaging of the information from the reference detector but with the negative signals inverted, the quality of the reconstructed images is in general superior to all other ghost imaging (GI) methods to date. The advantages of both differential GI and time-correspondence GI are combined, plus less data manipulation and shorter computation time are required to obtain equivalent quality images under the same conditions. This TCDGI method offers a general approach applicable to all GI techniques, especially when objects with continuous gray tones are involved.
We develop a new approach in magneto-optical imaging (MOI), applying for the first time a ghost imaging (GI) protocol to perform Faraday microscopy. MOI is of the utmost importance for the investigation of magnetic properties of material samples, thr
For conventional imaging, shaking of the imaging system or the target leads to the degradation of imaging resolution. In this work, the influence of the targets shaking to fourier-transform ghost diffraction (FGD) is investigated. The analytical resu
Ghost imaging with thermal light in scattering media is investigated. We demonstrated both theoretically and experimentally for the first time that the image with high quality can still be obtained in the scattering media by ghost imaging. The scatte
A recent thermal ghost imaging experiment by Wus group constructed positive and negative images using a novel algorithm. This algorithm allows to form the images with use of partial measurements from the reference arm, even which never passes through
Ghost imaging is an unconventional optical imaging technique that reconstructs the shape of an object combining the measurement of two signals: one that interacted with the object, but without any spatial information, the other containing spatial inf