ترغب بنشر مسار تعليمي؟ اضغط هنا

Instruction sequence based non-uniform complexity classes

118   0   0.0 ( 0 )
 نشر من قبل Kees Middelburg
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform complexity class P/poly and another kind includes a counterpart of the well-known non-uniform complexity class NP/poly. Moreover, we introduce a general notion of completeness for the non-uniform complexity classes of the latter kind. We also formulate a counterpart of the well-known complexity theoretic conjecture that NP is not included in P/poly. We think that the presented approach opens up an additional way of investigating issues concerning non-uniform complexity.



قيم البحث

اقرأ أيضاً

We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and form ulate a counterpart of the complexity theoretic conjecture that NP is not included in P/poly. In addition, we define a notion of completeness for the counterpart of NP/poly using a non-uniform reducibility relation and formulate complexity hypotheses which concern restrictions on the instruction sequences used for computation. We think that the theory developed opens up an additional way of investigating issues concerning non-uniform complexity.
Each Boolean function can be computed by a single-pass instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Auxiliary Boolean registers are not necessary for this. In the current paper, we show that, in the case of the parity functions, shorter instruction sequences are possible with the use of an auxiliary Boolean register in the presence of instructions to complement the content of auxiliary Boolean registers. This result supports, in a setting where programs are instruction sequences acting on Boolean registers, a basic intuition behind the storage of auxiliary data, namely the intuition that this makes possible a reduction of the size of a program.
We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not ha ve polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
We prove three results on the dimension structure of complexity classes. 1. The Point-to-Set Principle, which has recently been used to prove several new theorems in fractal geometry, has resource-bounded instances. These instances characterize the resource-bounded dimension of a set $X$ of languages in terms of the relativized resource-bounded dimensions of the individual elements of $X$, provided that the former resource bound is large enough to parameterize the latter. Thus for example, the dimension of a class $X$ of languages in EXP is characterized in terms of the relativized p-dimensions of the individual elements of $X$. 2. Every language that is $leq^P_m$-reducible to a p-selective set has p-dimension 0, and this fact holds relative to arbitrary oracles. Combined with a resource-bounded instance of the Point-to-Set Principle, this implies that if NP has positive dimension in EXP, then no quasipolynomial time selective language is $leq^P_m$-hard for NP. 3. If the set of all disjoint pairs of NP languages has dimension 1 in the set of all disjoint pairs of EXP languages, then NP has positive dimension in EXP.
Let $F$ be a connected graph with $ell$ vertices. The existence of a subgraph isomorphic to $F$ can be defined in first-order logic with quantifier depth no better than $ell$, simply because no first-order formula of smaller quantifier depth can dist inguish between the complete graphs $K_ell$ and $K_{ell-1}$. We show that, for some $F$, the existence of an $F$ subgraph in emph{sufficiently large} connected graphs is definable with quantifier depth $ell-3$. On the other hand, this is never possible with quantifier depth better than $ell/2$. If we, however, consider definitions over connected graphs with sufficiently large treewidth, the quantifier depth can for some $F$ be arbitrarily small comparing to $ell$ but never smaller than the treewidth of $F$. Moreover, the definitions over highly connected graphs require quantifier depth strictly more than the density of $F$. Finally, we determine the exact values of these descriptive complexity parameters for all connected pattern graphs $F$ on 4 vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا