ﻻ يوجد ملخص باللغة العربية
We use Monte Carlo methods to study spinons in two-dimensional quantum spin systems, characterizing their intrinsic size $lambda$ and confinement length $Lambda$. We confirm that spinons are deconfined, $Lambda to infty$ and $lambda$ finite, in a resonating valence-bond spin-liquid state. In a valence-bond solid, we find finite $lambda$ and $Lambda$, with $lambda$ of a single spinon significantly larger than the bound-state---the spinon is soft and shrinks as the bound state is formed. Both $lambda$ and $Lambda$ diverge upon approaching the critical point separating valence-bond solid and Neel ground states. We conclude that the spinon deconfinement is marginal in the lowest-energy state in the spin-1 sector, due to weak attractive spinon interactions. Deconfinement in the vicinity of the critical point should occur at higher energies.
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic
We introduce an entanglement entropy analysis to quantitatively identify the confinement and deconfinement of the spinons in the spin excitations of quantum magnets. Our proposal is implemented by the parton construction of a honeycomb-lattice antife
One of the challenging features of studying model Hamiltonians with cold atoms in optical lattices is the presence of spatial inhomogeneities induced by the confining potential, which results in the coexistence of different phases. This paper present
We investigate the confinement-deconfinement transition at finite temperature in terms of the probability distribution of Polyakov-loop complex-phase via the Jensen-Shannon divergence. The Jensen-Shannon divergence quantifies the difference of two pr
We discuss compact (2+1)-dimensional Maxwell electrodynamics coupled to fermionic matter with N replica. For large enough N, the latter corresponds to an effective theory for the nearest neighbor SU(N) Heisenberg antiferromagnet, in which the fermion