ﻻ يوجد ملخص باللغة العربية
In this paper, we employ Meyer wavelets to characterize multiplier spaces between Sobolev spaces without using capacity. Further, we introduce logarithmic Morrey spaces $M^{t,tau}_{r,p}(mathbb{R}^{n})$ to establish the inclusion relation between Morrey spaces and multiplier spaces. By wavelet characterization and fractal skills, we construct a counterexample to show that the scope of the index $tau$ of $M^{t,tau}_{r,p}(mathbb{R}^{n})$ is sharp. As an application, we consider a Schrodinger type operator with potentials in $M^{t,tau}_{r,p}(mathbb{R}^{n})$.
In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schr{o}dinger operators $(-Delta+m^{2})^{s}$ with $sin(0
In this paper, we consider an optimal bilinear control problem for the nonlinear Schr{o}dinger equations with singular potentials. We show well-posedness of the problem and existence of an optimal control. In addition, the first order optimality syst
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asy
In this paper, we study important Schr{o}dinger systems with linear and nonlinear couplings begin{equation}label{eq:diricichlet} begin{cases} -Delta u_1-lambda_1 u_1=mu_1 |u_1|^{p_1-2}u_1+r_1beta |u_1|^{r_1-2}u_1|u_2|^{r_2}+kappa (x)u_2~hbox{in}~math
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on