The Load-Balanced Router architecture has received a lot of attention because it does not require centralized scheduling at the internal switch fabrics. In this paper we reexamine the architecture, motivated by its potential to turn off multiple components and thereby conserve energy in the presence of low traffic. We perform a detailed analysis of the queue and delay performance of a Load-Balanced Router under a simple random routing algorithm. We calculate probabilistic bounds for queue size and delay, and show that the probabilities drop exponentially with increasing queue size or delay. We also demonstrate a tradeoff in energy consumption against the queue and delay performance.