ﻻ يوجد ملخص باللغة العربية
We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 $N$-body/hydrodynamic simulation code, paying particular attention to the effects of the gas halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. On the other hand, the SFRs in the models with a gas halo emerge to be either relatively flat throughout the simulations or increasing over a gigayear and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored, and expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.
Galaxy spins can be predicted from the initial conditions in the early Universe through the tidal tensor twist. In simulations, their directions are well preserved through cosmic time, consistent with expectations of angular momentum conservation. We
Generating pre-initial conditions (or particle loads) is the very first step to set up a cosmological N-body simulation. In this work, we revisit the numerical convergence of pre-initial conditions on dark matter halo properties using a set of simula
Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary compariso
The abundance and distribution of metals in galaxy clusters contains valuable information about their chemical history and evolution. By looking at how metallicity evolves with redshift, it is possible to constrain the different metal production chan
We use $N$-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 an