ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditions for the growth of smooth La0.7Sr0.3MnO3 thin films by pulsed electron ablation

154   0   0.0 ( 0 )
 نشر من قبل Patrizio Graziosi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the optimisation of the growth conditions of manganite La0.7Sr0.3MnO3 (LSMO) thin films prepared by Channel Spark Ablation (CSA). CSA belongs to pulsed electron deposition methods and its energetic and deposition parameters are quite similar to those of pulsed laser deposition. The method has been already proven to provide manganite films with good magnetic properties, but the films were generally relatively rough (a few nm coarseness). Here we show that increasing the oxygen deposition pressure with respect to previously used regimes, reduces the surface roughness down to unit cell size while maintaining a robust magnetism. We analyse in detail the effect of other deposition parameters, like accelerating voltage, discharging energy, and temperature and provide on this basis a set of optimal conditions for the growth of atomically flat films. The thicknesses for which atomically flat surface was achieved is as high as about 10-20 nm, corresponding to films with room temperature magnetism. We believe such magnetic layers represent appealing and suitable electrodes for various spintronic devices.



قيم البحث

اقرأ أيضاً

372 - H. Eng , W. Prellier , S. Hebert 2004
Thin films of the misfit cobaltite Ca3Co4O9 were grown on (0001)-oriented (c-cut) sapphire substrates, using the pulsed-laser deposition techniques. The dependence of the thermoelectric/transport properties on the film growth conditions was investigated
213 - Wei Yuan , Yuelei Zhao , Chi Tang 2015
La0.7Sr0.3MnO3 (LSMO) films with extraordinarily wide atomic terraces are epitaxially grown on SrTiO3 (100) substrates by pulsed laser deposition. Atomic force microscopy measurements on the LSMO films show that the atomic step is ~ 4 {AA} and the at omic terrace width is more than 2 micrometers. For a 20 monolayers (MLs) LSMO film, the magnetization is determined to be 255 +- 15 emu/cm3 at room temperature, corresponding to 1.70 + - 0.11 Bohr magneton per Mn atom. As the thickness of LSMO increases from 8 MLs to 20 MLs, the critical thickness for the temperature dependent insulator-to-metal behavior transition is shown to be 9 MLs. Furthermore, post-annealing in oxygen environment improves the electron transport and magnetic properties of the LSMO films.
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments revealed four important factors to stabilize tetragonal FeS epitaxial thin films: (i) an optimum growth temperature of 300 {deg}C followed by thermal quenching, (ii) an optimum growth rate of ~7 nm/min, (iii) use of a high-purity bulk target, and (iv) use of a single-crystal substrate with small in-plane lattice mismatch (CaF2). Electrical resistivity measurements indicated that none of all the films exhibited superconductivity. Although an electric double-layer transistor structure was fabricated using the tetragonal FeS epitaxial film as a channel layer to achieve high-density carrier doping, no phase transition was observed. Possible reasons for the lack of superconductivity include lattice strain, off-stoichiometry of the film, electrochemical etching by the ionic liquid under gate bias, and surface degradation during device fabrication.
Recently, nanolaminated ternary carbides have attracted immense interest due to the concomitant presence of both ceramic and metallic properties. Here, we grow nanolaminate Ti3AlC2 thin films by pulsed laser deposition on c-axis-oriented sapphire sub strates and, surprisingly, the films are found to be highly oriented along the (103) axis normal to the film plane, rather than the (000l) orientation. Multiple characterization techniques are employed to explore the structural and chemical quality of these films, the electrical and optical properties, and the device functionalities. The 80-nm thick Ti3AlC2 film is highly conducting at room temperature (resistivity of 50 micro ohm-cm), and a very-low-temperature coefficient of resistivity. The ultrathin (2 nm) Ti3AlC2 film has fairly good optical transparency and high conductivity at room temperature (sheet resistance of 735 ohm). Scanning tunneling microscopy reveals the metallic characteristics (with finite density of states at the Fermi level) at room temperature. The metal-semiconductor junction of the p-type Ti3AlC2 film and n-Si show the expected rectification (diode) characteristics, in contrast to the ohmic contact behavior in the case of Ti3AlC2 on p-Si. A triboelectric-nanogenerator-based touch-sensing device, comprising of the Ti3AlC2 film, shows a very impressive peak-to-peak open-circuit output voltage of 80 V. These observations reveal that pulsed laser deposited Ti3AlC2 thin films have excellent potential for applications in multiple domains, such as bottom electrodes, resistors for high-precision measurements, Schottky diodes, ohmic contacts, fairly transparent ultrathin conductors, and next-generation biomechanical touch sensors for energy harvesting.
129 - B. Vishal , H. Sharona , U. Bhat 2018
We present results on growth of large area epitaxial ReS2 thin film both on c plane sapphire substrate and MoS2 template by pulsed laser deposition (PLD). Films tend to grow with (0001) ReS2 perpendicular to (0001) Al2O3 and (0001) ReS2 perpendicular to (0001) MoS2 parallel to (0001) Al2O3 at deposition temperature below 300 deg C. Films are polycrystalline grown at temperature above 300 deg C. The smoothness and quality of the films are significantly improved when grown on MoS2 template compared to sapphire substrate. The results show that PLD is suitable to grow ReS2 epitaxial thin film over large area for practical device application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا