ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust in active galactic nuclei. Mid-infrared T-ReCS/Gemini spectra using the new RedCan pipeline

160   0   0.0 ( 0 )
 نشر من قبل Omaira Gonzalez Martin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unified model of active galactic nuclei (AGN) claims that the properties of AGN depend on the viewing angle of the observer with respect to a toroidal distribution of dust surrounding the nucleus. Both the mid-infrared (MIR) attenuation and continuum luminosity are expected to be related to dust associated with the torus. Therefore, isolating the nuclear component is essential to study the MIR emission of AGN. We have compiled all the T-ReCS spectra (Gemini observatory) available in the N-band for 22 AGN: 5 Type-1 and 17 Type-2 AGN. The high angular resolution of the T-ReCs spectra allows us to probe physical regions of 57 pc (median). We have used a novel pipeline called RedCan capable of producing flux- and wavelength-calibrated spectra for the CanariCam (GTC) and T-ReCS (Gemini) instruments. We have measured the fine-structure [SIV] at 10.5 microns and the PAH at 11.3 microns line strengths together with the silicate absorption/emission features. We have also compiled Spitzer/IRS spectra to understand how spatial resolution influences the results. The 11.3 microns PAH feature is only clearly detected in the nuclear spectra of two AGN, while it is more common in the Spitzer data. For those two objects the AGN emission in NGC7130 accounts for more than 80% of the MIR continuum at 12 microns while in the case of NGC1808 the AGN is not dominating the MIR emission. This is confirmed by the correlation between the MIR and X-ray continuum luminosities. The [SIV] emission line at 10.5 microns, which is believed to originate in the narrow line region, is detected in most AGN. We have found an enhancement of the optical depth at 9.7 microns in the high-angular resolution data for higher values of NH. Clumpy torus models reproduce the observed values only if the host-galaxy properties are taken into account.



قيم البحث

اقرأ أيضاً

We present Spitzer measurements of the aromatic (also known as PAH) features for 35 Seyfert galaxies from the revised Shapley-Ames sample and find that the relative strengths of the features differ significantly from those observed in star-forming ga laxies. Specifically, the features at 6.2, 7.7, and 8.6 micron are suppressed relative to the 11.3 micron feature in Seyferts. Furthermore, we find an anti-correlation between the L(7.7 micron)/L(11.3 micron) ratio and the strength of the rotational H2 (molecular hydrogen) emission, which traces shocked gas. This suggests that shocks suppress the short-wavelength features by modifying the structure of the aromatic molecules or destroying the smallest grains. Most Seyfert nuclei fall on the relationship between aromatic emission and [Ne II] emission for star-forming galaxies, indicating that aromatic-based estimates of the star-formation rate in AGN host galaxies are generally reasonable. For the outliers from this relationship, which have small L(7.7 micron)/L(11.3 micron) ratios and strong H2 emission, the 11.3 micron feature still provides a valid measure of the star-formation rate.
We present T-ReCS high spatial resolution N-band (8-13 micron) spectroscopy of the central regions (a few kpc) of 3 local LIRGs. The nuclear spectra show deep 9.7 micron silicate absorption feature and the high ionization [SIV]10.5 micron emission li ne, consistent with their optical classification as AGN. The two LIRGs with unresolved mid-IR emission do not show PAH emission at 11.3 micron in their nuclear spectra. The spatially resolved mid-IR spectroscopy of NGC 5135 allows us to separate out the spectra of the Seyfert nucleus, an HII region, and the diffuse region between them on scales of less than 2.5 arcsec ~ 600 pc. The diffuse region spectrum is characterized by strong PAH emission with almost no continuum, whereas the HII region shows PAH emission with a smaller equivalent width as well as [NeII]12.8 micron line.
107 - D. Asmus , S. F. Honig , P. Gandhi 2016
Recent mid-infrared (MIR) interferometric observations showed in few active galactic nuclei (AGN) that the bulk of the infrared emission originates from the polar region above the putative torus, where only little dust should be present. Here, we inv estigate whether such strong polar dust emission is common in AGN. Out of 149 Seyferts in the MIR atlas of local AGN (Asmus et al.), 21 show extended MIR emission on single dish images. In 18 objects, the extended MIR emission aligns with the system axis position angle, established by [OIII], radio, polarisation and maser based position angle measurements. The relative amount of resolved MIR emission is at least 40 per cent and scales with the [OIV] fluxes implying a strong connection between the extended continuum and [OIV] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGN. The current low detection rate of polar dust in the AGN of the MIR atlas is explained by the lack of sufficient high quality MIR data and the requirement for the orientation, NLR strength and distance of the AGN. The James-Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGN.
Stern et al.(2012) presented a study of WISE selection of AGN in the 2 deg^2 COSMOS field, finding that a simple criterion W1-W2>=0.8 provides a highly reliable and complete AGN sample for W2<15.05, where the W1 and W2 passbands are centered at 3.4 a nd 4.6 microns, respectively. Here we extend this study using the larger 9 deg^2 NOAO Deep Wide-Field Survey Bootes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color-cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130+/-4 deg^-2 AGN candidates for W2<17.11 with 90% reliability. Using the extensive UV through mid-IR broad-band photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. As expected, the WISE AGN selection is biased towards objects where the AGN dominates the bolometric luminosity output, and that it can identify highly obscured AGN. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al.(1988). The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a Simpson (2005) receding torus. At L_AGN~3x10^44 erg/s, 29+/-7% of AGN are observed as Type 1, while at ~4x10^45 erg/s the fraction is 64+/-13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds.
We present the largest mid-infrared atlas of active galactic nuclei at sub-arcsecond spatial scales containing 249 objects. It comprises all ground-based HR MIR observations performed to date. This catalog includes a large number of new observations. The photometry in multiple filters allows for characterizing the properties of the dust emission for most objects. Because of its size and characteristics, this sample is very well-suited for AGN unification studies. In particular, we discuss the enlarged MIR--X-ray correlation which extends over six orders of magnitude in luminosity and potentially probes different physical mechanisms. Finally, tests for intrinsic differences between the AGN types are presented and we discuss dependencies of MIR--X-ray properties with respect to fundamental AGN parameters such as accretion rate and the column density and covering factor of obscuring material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا