ترغب بنشر مسار تعليمي؟ اضغط هنا

Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

118   0   0.0 ( 0 )
 نشر من قبل David Larson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zeldovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.



قيم البحث

اقرأ أيضاً

We present the final nine-year maps and basic results from the WMAP mission. We provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate CMB anisotropy from foreground emission, and both types of signals are analyzed in detail. The WMAP mission has resulted in a highly constrained LCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that Big Bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (3.84+/-0.40). The model fit also implies that the age of the universe is 13.772+/-0.059 Gyr, and the fit Hubble constant is H0 = 69.32+/-0.80 km/s/Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity reported earlier by WMAP now has high statistical significance (n_s = 0.9608+/-0.0080); and the universe is close to flat/Euclidean, Omega_k = -0.0027 (+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter LCDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further. With no significant anomalies and an adequate goodness-of-fit, the inflationary flat LCDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.
(Abridged) The 7-year WMAP data and improved astrophysical data rigorously test the standard cosmological model and its extensions. By combining WMAP with the latest distance measurements from BAO and H0 measurement, we determine the parameters of th e simplest LCDM model. The power-law index of the primordial power spectrum is n_s=0.968+-0.012, a measurement that excludes the scale-invariant spectrum by 99.5%CL. The other parameters are also improved from the 5-year results. Notable examples of improved parameters are the total mass of neutrinos, sum(m_nu)<0.58eV, and the effective number of neutrino species, N_eff=4.34+0.86-0.88. We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis. We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z=1090 and the dominance of adiabatic scalar fluctuations. With the 7-year TB power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved to Delta(alpha)=-1.1+-1.4(stat)+-1.5(syst) degrees. We report significant detections of the SZ effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data. However, it is a factor of 0.5 to 0.7 times the predictions from universal profile of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected SZ power spectrum recently measured by the South Pole Telescope collaboration.
69 - L. Verde 2003
We describe our methodology for comparing the WMAP measurements of the cosmic microwave background (CMB) and other complementary data sets to theoretical models. The unprecedented quality of the WMAP data, and the tight constraints on cosmological pa rameters that are derived, require a rigorous analysis so that the approximations made in the modeling do not lead to significant biases. We describe our use of the likelihood function to characterize the statistical properties of the microwave background sky. We outline the use of the Monte Carlo Markov Chains to explore the likelihood of the data given a model to determine the best fit cosmological parameters and their uncertainties. We add to the WMAP data the l>~700 CBI and ACBAR measurements of the CMB, the galaxy power spectrum at z~0 obtained from the 2dF galaxy redshift survey (2dFGRS), and the matter power spectrum at z~3 as measured with the Ly alpha forest. These last two data sets complement the CMB measurements by probing the matter power spectrum of the nearby universe. Combining CMB and 2dFGRS requires that we include in our analysis a model for galaxy bias, redshift distortions, and the non-linear growth of structure. We show how the statistical and systematic uncertainties in the model and the data are propagated through the full analysis.
(Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improve d knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zeldovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.
(Abridged) We present the angular power spectra derived from the 7-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context o f a flat LambdaCDM model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, and on the epoch of matter-radiation equality, The temperature-polarization (TE) spectrum is detected in the 7-year data with a significance of 20 sigma, compared to 13 sigma with the 5-year data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5 sigma significance when averaged over l = 2-7. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero. The upper limit on tensor modes from polarization data alone is a factor of 2 lower with the 7-year data than it was using the 5-year data (Komatsu et al. 2010). We test the parameter recovery process for bias and find that the scalar spectral index, ns, is biased high, but only by 0.09 sigma, while the remaining parameters are biased by < 0.15 sigma. The improvement in the third peak measurement leads to tighter lower limits from WMAP on the number of relativistic degrees of freedom (e.g., neutrinos) in the early universe: Neff > 2.7 (95% CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be YHe = 0.28+0.14-0.15, and with data from higher-resolution CMB experiments included, we now establish the existence of pre-stellar helium at > 3 sigma (Komatsu et al. 2010).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا