ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature transport properties of multigraphene structures on 6H-SiC obtained by thermal graphitization: evidences of a presence of nearly perfect graphene layer

187   0   0.0 ( 0 )
 نشر من قبل Nina Agrinskaya
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport properties of multigraphene layers on 6H-SiC substrates fabricated by thermal graphitization of SiC were studied. The principal result is that these structures were shown to contain a nearly perfect graphene layer situated between the SiC substrate and multgraphene layer. It was found that the curves of magnetoresistance and Shubnikov- de Haas oscillations shown the features, typical for single-layered graphene. The low temperature resistance demonstrated an increase with temperature increase, which also corresponds to a behavior typical for single-layered graphene (antilocalization). However at higher temperatures the resistance decreased with an increase of temperature, which corresponds to a weak localization. We believe that the observed behavior can be explained by a parallel combination of contributions to the conductivity of single-layered graphene and of multigraphene, the latter allowing to escape damages of the graphene by atmosphere effect.



قيم البحث

اقرأ أيضاً

The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-a rea, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
The minimization of electronics makes heat dissipation of related devices an increasing challenge. When the size of materials is smaller than the phonon mean free paths, phonons transport without internal scatterings and laws of diffusive thermal con duction fail, resulting in significant reduction in the effective thermal conductivity. This work reports, for the first time, the temperature dependent thermal conductivity of doped epitaxial 6H-SiC and monocrystalline porous 6H-SiC below room temperature probed by time-domain thermoreflectance. Strong quasi-ballistic thermal transport was observed in these samples, especially at low temperatures. Doping and structural boundaries were applied to tune the quasi-ballistic thermal transport since dopants selectively scatter high-frequency phonons while boundaries scatter phonons with long mean free paths. Exceptionally strong phonon scattering by boron dopants are observed, compared to nitrogen dopants. Furthermore, orders of magnitude reduction in the measured thermal conductivity was observed at low temperatures for the porous 6H-SiC compared to the epitaxial 6H-SiC. Finally, first principles calculations and a simple Callaway model are built to understand the measured thermal conductivities. Our work sheds light on the fundamental understanding of thermal conduction in technologically-important wide bandgap semiconductors such as 6H-SiC and will impact applications such as thermal management of 6H-SiC-related electronics and devices.
We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by d eposition of atomically thin Au on the Bu-L followed by annealing at 850 {deg}C in an Argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterizations and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate tunable ambipolar transport across the Dirac point, and n- or p-type doping depending on the Au content.
The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
We have investigated epitaxial graphene films grown on SiC(0001) by annealing in an atmosphere of Ar instead of vacuum. Using AFM and LEEM we observe a significantly improved surface morphology and graphene domain size. Hall measurements on monolayer graphene films show a carrier mobility of around 1000 cm^2/Vs at room temperature and 2000 cm^2/Vs at 27K. The growth process introduced here establishes the synthesis of graphene films on a technologically viable basis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا