ترغب بنشر مسار تعليمي؟ اضغط هنا

Final state interaction effects in exclusive electrodisintegration of the deuteron

514   0   0.0 ( 0 )
 نشر من قبل Serge G. Bondarenko Dr.
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The exclusive electrodisintegration of the deuteron is considered within the Bethe-Salpeter approach with a separable interaction kernel. The relativistic kernel of nucleon-nucleon interaction is obtained considering the phase shifts in the elastic neutron-proton scattering and properties of the deuteron. The differential cross section is calculated within the impulse approximation under several kinematic conditions of the Bonn experiment. Final state interactions between the outgoing nucleons are taken into account. Partial-wave states of the neutron-proton pair with total angular momentum J=0,1 are considered.



قيم البحث

اقرأ أيضاً

56 - S.G. Bondarenko 2006
The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter approach with a separable kernel of the nucleon-nucleon interaction is considered. This conception keeps the covariance of a description of the process. A comparison of rela tivistic and nonrelativistic calculations is presented. The factorization of the cross section of the reaction in the impulse approximation is obtained by analytical calculations. It is shown that the photon-neutron interaction plays an important role.
We discuss a new approach to final state interactions, that keeps explicitly into account the virtuality of the ejected nucleon in quasi-elastic $A(e,ep)X$ scattering at very large $Q^2$, and we present some recent results, at moderately large $Q^2$ values, for the nuclear transparency in $^4He$, $^{16}O$ and $^{40}Ca$ and for the momentum distributions of $^4He$.
We consider the charged-current quasielastic scattering of muon neutrinos on an Oxygen 16 target, described within a relativistic shell model and, for comparison, the relativistic Fermi gas. Final state interactions are described in the distorted wav e impulse approximation, using both a relativistic mean field potential and a relativistic optical potential, with and without imaginary part. We present results for inclusive cross sections at fixed neutrino energies in the range $E_ u =$ 200 MeV - 1 GeV, showing that final state interaction effects can remain sizable even at large energies.
The effects of the final state interaction (FSI) in semi inclusive deep inelastic electron scattering processes $A(e,ep)X$ off nuclei are investigated in details. Proton production is described within the spectator and the target fragmentation mechan isms whose relevance to the experimental study of the deep inelastic structure functions of bound nucleons and the non perturbative hadronization process is analyzed. Particular attention is paid to the deuteron target within kinematical conditions corresponding to the available and forthcoming experimental data at Jlab. We argue that there are kinematical regions where FSI effects are minimized, allowing for a reliable investigation of the DIS structure functions, and regions where the interaction of the quark-gluon debris with nucleons is maximized, which makes it possible to study hadronization mechanisms. Nuclear structure has been described by means of realistic wave functions and spectral functions and the final state interaction has been treated within an eikonal approximation approach which takes into account the rescattering of the quark-gluon debris with the residual nucleus and, in the case of complex nuclei, within an optical potential approach to account for the FSI of the struck proton.
The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,ep)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mecha nism, the hard interaction on a nucleon of a correlated pair leads, by recoil, to the emission of the partner nucleon, whereas in the latter mechanism proton is produced when the diquark, which is formed right after the visrtual photon-quark interaction, captures a quark from the vacuum. Unlike previous papers on the subject, particular attention is paid on the effects of the final state interaction of the hadronizing quark with the nuclear medium within an approach based upon an effective time-dependent cross section which combines the soft and hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown that the final state interaction of the hadronizing quark with the medium plays a relevant role both in deuteron and complex nuclei; nonetheless, kinematical regions where final state interaction effects are minimized can experimentally be selected, which would allow one to investigate the structure functions of nucleons embedded in the nuclear medium; likewise, regions where the interaction of the struck hadronizing quark with the nuclear medium is maximized can be found, which would make it possible to study non perturbative hadronization mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا