ﻻ يوجد ملخص باللغة العربية
Let A be an associative algebra over an algebraically closed field F of characteristic zero and let G be a finite abelian group. Regev and Seeman introduced the notion of a regular G-grading on A, namely a grading A= {Sigma}_{g in G} A_g that satisfies the following two conditions: (1) for every integer n>=1 and every n-tuple (g_1,g_2,...,g_n) in G^n, there are elements, a_i in A_{g_i}, i=1,...,n, such that a_1*a_2*...*a_n != 0. (2) for every g,h in G and for every a_g in A_g,b_h in A_h, we have a_{g}b_{h}=theta(g,h)b_{h}a_{g}. Then later, Bahturin and Regev conjectured that if the grading on A is regular and minimal, then the order of the group G is an invariant of the algebra. In this article we prove the conjecture by showing that ord(G) coincides with an invariant of A which appears in PI theory, namely exp(A) (the exponent of A). Moreover, we extend the whole theory to (finite) nonabelian groups and show that the above result holds also in that case.
The goal of this paper is to study the structure of split regular BiHom-Leiniz superalgebras, which is a natural generalization of split regular Hom-Leiniz algebras and split regular BiHom-Lie superalgebras. By developing techniques of connections of
In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+sum_gamma I_gamma$ with
Let $F$ be an algebraically closed field of characteristic zero and let $G$ be a finite group. Consider $G$-graded simple algebras $A$ which are finite dimensional and $e$-central over $F$, i.e. $Z(A)_{e} := Z(A)cap A_{e} = F$. For any such algebra w
Antilattices $(S;lor, land)$ for which the Greens equivalences $mathcal L_{(lor)}$, $mathcal R_{(lor)}$, $mathcal L_{(land)}$ and $mathcal R_{(land)}$ are all congruences of the entire antilattice are studied and enumerated.
The aim of this paper is to study the structures of split regular Hom-Lie Rinehart algebras. Let $(L,A)$ be a split regular Hom-Lie Rinehart algebra. We first show that $L$ is of the form $L=U+sum_{[gamma]inGamma/thicksim}I_{[gamma]}$ with $U$ a vect