ﻻ يوجد ملخص باللغة العربية
We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e. on the time evolution of the reaction product, M(t). At variance with pure diffusive processes, characterized by the spectral dimension, d_s, for reaction spreading the important quantity is found to be the connectivity dimension, d_l. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t) ~ t^{d_l}. In the case of Erdos-Renyi random graphs, the reaction-product is characterized by an exponential growth M(t) ~ e^{a t} with a proportional to ln<k>, where <k> is the average degree of the graph.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domai
We study a lattice model for the spreading of fluid films, which are a few molecular layers thick, in narrow channels with inert lateral walls. We focus on systems connected to two particle reservoirs at different chemical potentials, considering an
We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each stru
Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of motion. The study of such operator spreading has aided our understanding of many-body quantum chaos in spin-chains. Here we initiate the study of operator spr
We propose a new model that describes the dynamics of epidemic spreading on connected graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a standard SIR model and connexions between vertices are given by heat equa