ﻻ يوجد ملخص باللغة العربية
A laser ablation system has been constructed and used to determine the damage threshold of stainless steel, rhodium and single-, poly- and nanocrystalline molybdenum in vacuum, at a number of wavelengths between 220 and 1064 nm using 5 ns pulses. All materials show an increase of the damage threshold with decreasing wavelength below 400 nm. Tests in a nitrogen atmosphere showed a decrease of the damage threshold by a factor of two to three. Cleaning tests have been performed in vacuum on stainless steel samples after applying mixed Al/W/C/D coatings using magnetron sputtering. In situ XPS analysis during the cleaning process as well ex situ reflectivity measurements demonstrate near complete removal of the coating and a substantial recovery of the reflectivity. The first results also show that the reflectivity obtained through cleaning at 532 nm may be further increased by additional exposure to UV light, in this case 230 nm, an effect which is attributed to the removal of tungsten dust from the surface.
To avoid reflectivity losses in ITER optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on l
This investigation presents a new experimental determination of the reflectivity of 128 nm scintillation photons off stainless steel. The experiment took place in the TallBo dewar facility at Fermilab. The data were obtained using a detector that is
Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in vacuum environment for 800 nm laser pulses with durations {tau} ranging from 50 fs to 200 ps. Results show that the laser dam
This paper describes the design and the construction of the stainless steel tank of the JSNS$^2$ detector. The leakage was examined using water and gas after the construction. The new sealing technique with liquid gasket was developed, and its sealin
Free-electron lasers (FELs) opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120 Hz pulses with 10^12 to 10^13 photons in 10 fs (billions of times brighter than at the most powerfu