ترغب بنشر مسار تعليمي؟ اضغط هنا

ASTEP South: a first photometric analysis

173   0   0.0 ( 0 )
 نشر من قبل Nicolas Crouzet
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R=8 to 6% at R=14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R=9.85. The 2-season lightcurve folded in phase and binned into 1000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better detrending algorithm should yield a sub-millimagnitude precision for this folded lightcurve. Radial velocity follow-up observations are conducted and reveal a F-M binary system. The detection of this 9.9-day period system with a small instrument such as ASTEP South and the precision of the folded lightcurve show the quality of Dome C for continuous photometric observations, and its potential for the detection of planets with orbital period longer than those usually detected from the ground.



قيم البحث

اقرأ أيضاً

Dome C in Antarctica is a promising site for photometric observations thanks to the continuous night during the Antarctic winter and favorable weather conditions. We developed instruments to assess the quality of this site for photometry in the visib le and to detect and characterize variable objects through the Antarctic Search for Transiting ExoPlanets (ASTEP) project. We present the full analysis of four winters of data collected with ASTEP South, a 10 cm refractor pointing continuously toward the celestial south pole. We improved the instrument over the years and developed specific data reduction methods. We achieved nearly continuous observations over the winters. We measure an average sky background of 20 mag arcsec$^{-2}$ in the 579-642 nm bandpass. We built the lightcurves of 6000 stars and developed a model to infer the photometric quality of Dome C from the lightcurves themselves. The weather is photometric $67.1pm4.2$ % of the time and veiled $21.8pm2.0$ % of the time. The remaining time corresponds to poor quality data or winter storms. We analyzed the lightcurves of $sigma$ Oct and HD 184465 and find that the amplitude of their main frequency varies by a factor of 3.5 and 6.7 over the four years, respectively. We also identify 34 new variable stars and eight new eclipsing binaries with periods ranging from 0.17 to 81 days. The phase coverage that we achieved with ASTEP South is exceptional for a ground-based instrument and the data quality enables the detection and study of variable objects. These results demonstrate the high quality of Dome C for photometry in the visible and for time series observations in general.
131 - Tristan Guillot 2015
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of elec tronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctua- tions on the optical paths. ASTEP 400 is a 40 cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0.1 and 5 arcsec) and to temperature fluctuations between --30 degrees C and --80 degrees C. We analyze both day-time and night-time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0.23 arcsec K--1 . We propose solutions to mitigate these effects.
141 - Nicolas Crouzet 2010
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88degree x 3.88degree field of view t o perform photometry of several thousand stars at visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the retrieval of nearly 1600 hours of data. We derive the fraction of photometric nights by measuring the number of detectable stars in the field. The method is sensitive to the presence of small cirrus clouds which are invisible to the naked eye. The fraction of night-time for which at least 50% of the stars are detected is 74% from June to September 2008. Most of the lost time (18.5% out of 26%) is due to periods of bad weather conditions lasting for a few days (white outs). Extended periods of clear weather exist. For example, between July 10 and August 10, 2008, the total fraction of time (day+night) for which photometric observations were possible was 60%. This confirms the very high quality of Dome C for nearly continuous photometric observations during the Antarctic winter.
108 - Nicolas Crouzet 2009
ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008 winter, the statistics are between 56.3 % and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of bad weather. Using these results in a probabilistic analysis of transit detection, we show that the detection efficiency of transiting exoplanets in one given field is improved at Dome C compared to a temperate site such as La Silla. For example we estimate that a year-long campaign of 10 cm refractor could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for detecting 2-day period giant planets around target stars from magnitude 10 to 15. This shows the high potential of Dome C for photometry and future planet discoveries. [Short abstract]
The Minerva-Australis telescope array is a facility dedicated to the follow-up, confirmation, characterisation, and mass measurement of bright transiting planets discovered by the Transiting Exoplanet Survey Satellite (TESS) -- a category in which it is almost unique in the southern hemisphere. It is located at the University of Southern Queenslands Mount Kent Observatory near Toowoomba, Australia. Its flexible design enables multiple 0.7m robotic telescopes to be used both in combination, and independently, for high-resolution spectroscopy and precision photometry of TESS transit planet candidates. Minerva-Australis also enables complementary studies of exoplanet spin-orbit alignments via Doppler observations of the Rossiter-McLaughlin effect, radial velocity searches for non-transiting planets, planet searches using transit timing variations, and ephemeris refinement for TESS planets. In this first paper, we describe the design, photometric instrumentation, software, and science goals of Minerva-Australis, and note key differences from its Northern hemisphere counterpart -- the Minerva array. We use recent transit observations of four planets--WASP-2b, WASP-44b, WASP-45b, and HD 189733b to demonstrate the photometric capabilities of Minerva-Australis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا