ﻻ يوجد ملخص باللغة العربية
We study activity waves of the kind that determine cyclic magnetic activity of various stars, including the Sun, as a more general physical rather than a purely astronomical problem. We try to identify resonances which are expected to occur when a mean-field dynamo excites waves of quasi-stationary magnetic field in two distinct spherical layers. We isolate some features that can be associated with resonances in the profiles of energy or frequency plotted versus a dynamo governing parameter. Rather unexpectedly however the resonances in spherical dynamos take a much less spectacular form than resonances in many more familiar branches of physics. In particular, we find that the magnitudes of resonant phenomena are much smaller than seem detectable by astronomical observations, and plausibly any related effects in laboratory dynamo experiments (which of course are not in gravitating spheres!) are also small. We discuss specific features relevant to resonant phenomena in spherical dynamos, and find parametric resonance to be the most pronounced type of resonance phenomena. Resonance conditions for these dynamo wave resonances are rather different from those for more conventional branches of physics. We suggest that the relative insignificance of the phenomenon in this case is because the phenomena of excitation and propagation of the activity waves are not well-separated from each other and this, together with the nonlinear nature of more-or-less realistic dynamos, suppress the resonances and makes them much less pronounced than resonant effects, for example in optics.
When scale separation in space and time is poor, the alpha effect and turbulent diffusivity have to be replaced by integral kernels. Earlier work in computing these kernels using the test-field method is now generalized to the case in which both spat
We study the connection between spherical wedge and full spherical shell geometries using simple mean-field $alpha^2$ dynamos. We solve the equations for a one-dimensional time-dependent mean-field dynamo to examine the effects of varying the polar a
In this paper we first discuss observational evidence of longitudinal concentrations of magnetic activity in the Sun and rapidly rotating late-type stars with outer convective envelopes. Scenarios arising from the idea of rotationally influenced anis
(abidged) Context: Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusio
We study magnetic field evolution in flows with fluctuating in time governing parameters in electrically conducting fluid. We use a standard mean-field approach to derive equations for large-scale magnetic field for the fluctuating ABC-flow as well a