ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric versus magnetic pairing mechanisms in high-temperature cuprate superconductors investigated using Raman scattering

194   0   0.0 ( 0 )
 نشر من قبل Ben Mallett
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest, and demonstrate, a systematic approach to the study of cuprate superconductors, namely, progressive change of ion size in order to systematically alter the interaction strength and other key parameters. R(Ba,Sr)$_2$Cu$_3$O$_y$ (R={La, ... Lu,Y}) is such a system where potentially obscuring structural changes are minimal. We thereby systematically alter both dielectric and magnetic properties. Dielectric fluctuation is characterized by ionic polarizability while magnetic fluctuation is characterized by exchange interactions measurable by Raman scattering. The range of transition temperatures is 70 to 107 K and we find that these correlate only with the dielectric properties, a behavior which persists with external pressure. The ultimate significance may remain to be proven but it highlights the role of dielectric screening in the cuprates and adds support to a previously proposed novel pairing mechanism involving exchange of quantized waves of electronic polarization.



قيم البحث

اقرأ أيضاً

181 - Louis Taillefer 2010
The origin of the exceptionally strong superconductivity of cuprates remains a subject of debate after more than two decades of investigation. Here we follow a new lead: The onset temperature for superconductivity scales with the strength of the anom alous normal-state scattering that makes the resistivity linear in temperature. The same correlation between linear resistivity and Tc is found in organic superconductors, for which pairing is known to come from fluctuations of a nearby antiferromagnetic phase, and in pnictide superconductors, for which an antiferromagnetic scenario is also likely. In the cuprates, the question is whether the pseudogap phase plays the corresponding role, with its fluctuations responsible for pairing and scattering. We review recent studies that shed light on this phase - its boundary, its quantum critical point, and its broken symmetries. The emerging picture is that of a phase with spin-density-wave order and fluctuations, in broad analogy with organic, pnictide, and heavy-fermion superconductors.
The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the pairing potential with the d-symmetry: the buckling mode facilitates electron pairing, while the breathing mode suppresses it. As a result, the critical temperature of La{2 - x}Sr{x}CuO{4} that is associated with the magnetic mechanism is lowered when phonons are taken into account.
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, volumin ous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
We have computed alpha^2Fs for the hole-doped cuprates within the framework of the one-band Hubbard model, where the full magnetic response of the system is treated properly. The d-wave pairing weight alpha^2F_d is found to contain not only a low ene rgy peak due to excitations near (pi,pi) expected from neutron scattering data, but to also display substantial spectral weight at higher energies due to contributions from other parts of the Brillouin zone as well as pairbreaking ferromagnetic excitations at low energies. The resulting solutions of the Eliashberg equations yield transition temperatures and gaps comparable to the experimentally observed values, suggesting that magnetic excitations of both high and low energies play an important role in providing the pairing glue in the cuprates.
The key ingredients in any superconductor are the Cooper pairs, in which two electrons combine to form a composite boson. In all conventional superconductors the pairing strength alone sets the majority of the physical properties including the superc onducting transition temperature T$_c$. In the cuprate high temperature superconductors, no such link has yet been found between the pairing interactions and T$_c$. Using a new variant of photoelectron spectroscopy we measure both the pair-forming ($Delta$) and a self energy/pair-breaking term ($Gamma_s$) as a function of sample type and sample temperature, and we make the measurements over a wide range of doping and temperatures within and outside of the pseudogap/competing order doping regimes. In all cases we find that T$_c$ is approximately set by a crossover between the pair-forming strength $Delta$ and 3 times the self-energy term $Gamma_s$ - a new paradigm for superconductivity. In addition to departing from conventional superconductivity in which the pairing alone sets T$_c$, these results indicate the zero-order importance of the near-nodal self-energy effects compared to competing order/pseudogap effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا