ﻻ يوجد ملخص باللغة العربية
We report the discovery of a unique gravitational lens system, SDSSJ2222+2745, producing five spectroscopically confirmed images of a z_s=2.82 quasar lensed by a foreground galaxy cluster at z_l=0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.1. Both the large image separations and the high image multiplicity of the lensed quasar are in themselves exceptionally rare, and observing the combination of these two factors is an exceptionally unlikely occurrence in present datasets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow up and verification with the 2.56m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from September 2011 to September 2012 reveal significant variability at the ~10-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z_s=2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ~100 days to ~6 years.
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system e
We report the discovery of a cluster-scale lensed quasar, SDSS J1029+2623, selected from the Sloan Digital Sky Survey. The lens system exhibits two lensed images of a quasar at z_s=2.197. The image separation of 22.5 makes it the largest separation l
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used t
We report the discovery of the two-image gravitationally lensed quasar SDSS J133222.62+034739.9 (SDSS J1332+0347) with an image separation of Delta_theta=1.14. This system consists of a source quasar at z_s=1.445 and a lens galaxy at z_l=0.191. The a
The sightline to the brighter member of the gravitationally lensed quasar pair UM 673A,B intersects a damped Lyman-alpha system (DLA) at z = 1.62650 which, because of its low redshift, has not been recognised before. Our high quality echelle spectra