ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraviolet Measurements of Interstellar C2

243   0   0.0 ( 0 )
 نشر من قبل Steven Federman
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed archival spectra acquired with the Hubble Space Telescope for a study of interstellar C2. Absorption from the electronic transitions, D ^1Sigma^+_u -- X ^1Sigma^+_g (0,0) as well as F ^1Pi_u -- X ^1Sigma^+_g (0,0) and (1,0), was the focus of the study. Our profile syntheses revealed that the lines of the F-X bands were broadened as a result of a perturbation involving the upper levels. Further evidence for the perturbation came from anomalies in line strength and position for the F-X (0,0) band. The perturbation likely arises from a combination of triplet-singlet interactions involving spin-orbit mixing between ^3Pi_u states and F ^1Pi_u and an avoided crossing between the ^3Pi_u states. Tunneling through a potential barrier caused by the 3 and 4 ^1Pi_u states and spin-orbit mixing with other close-lying triplet states of ungerade symmetry are less likely. Except for the broadening, lines in the F-X (1,0) band appear free from anomalies and can be used to study interstellar C2; new results for 10 sight lines are presented.



قيم البحث

اقرأ أيضاً

This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196A and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was det ermined from absorption lines of the Phillips A-X and Mulliken D-X systems. The width and shape of the narrow 6196A DIB profile apparently depend on the C2 temperature, being broader for higher values.
Using high-resolution (~85000) and high signal-to-noise ratio (~200) optical spectra acquired with the European Southern Observatory Ultraviolet and Visual Echelle Spectrograph, we have determined the interstellar column densities of C2 for six Galac tic lines of sight with E(B- V) ranging from 0.33 to 1.03. For our purposes, we identified and measured absorption lines belonging to the (1, 0), (2, 0) and (3, 0) Phillips bands A1{Pi}u-X1{Sigma}+g. We report on the identification of a few lines of the C2 (4, 0) Phillips system towards HD 147889. The curve-of-growth method is applied to the equivalent widths to determine the column densities of the individual rotational levels of C2. The excitation temperature is extracted from the rotational diagrams. The physical parameters of the intervening molecular clouds (e.g. gas kinetic temperatures and densities of collision partners) were estimated by comparison with the theoretical model of excitation of C2.
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructe d for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.
We report results from a FUSE survey of interstellar molecular hydrogen (H2) in the Galactic disk toward 139 O-type and early B-type stars at Galactic latitudes $|b| < 10^{circ}$, with updated photometric and parallax distances. The H2 absorption is measured using the far-ultraviolet Lyman and Werner bands, including strong R(0), R(1), and P(1) lines from rotational levels $J = 0$ and $J = 1$ and excited states up to $J = 5$ (sometimes $J = 6$ and 7). For each sight line, we report column densities $N_{H2}$, $N_{HI}$, $N(J)$, $N_H = N_{HI} + 2N_{H2}$, and molecular fraction, $f_{H2} = 2N_{H2}/N_H$. Our survey extends the 1977 Copernicus H2 survey up to $N_H sim 5times10^{21}$ cm$^{-2}$. The lowest rotational states have mean excitation temperatures and rms dispersions, $T_{01} = 88pm 20$ K and $T_{02} = 77pm18$ K, suggesting that J = 0,1,2 are coupled to the gas kinetic temperature. Populations of higher-J states exhibit mean excitation temperatures, $T_{24} = 237pm91$ K and $T_{35} = 304pm108$ K, produced primarily by UV radiative pumping. Correlations of $f_{H2}$ with E(B-V) and N_H show a transition to $f_{H2} geq 0.1$ at $N_ H geq 10^{21}$ cm$^{-2}$ and $E(B-V) > 0.2$, interpreted with an analytic model of H2 formation-dissociation equilibrium and attenuation of the far-UV radiation field by self-shielding and dust opacity. Results of this disk survey are compared to previous FUSE studies of H2 in translucent clouds, at high Galactic latitudes, and in the Magellanic Clouds. Using updated distances to the target stars, we find average sight-line values $langle f_{H2} rangle geq 0.20$ and $langle N_H/E(B-V) rangle = (6.07pm1.01)times10^{21}$ cm$^{-2}$ mag$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا